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The possibility to simulate the properties of many-body open quantum systems with a large number of
degrees of freedom (d.o.f.) is the premise to the solution of several outstanding problems in quantum
science and quantum information. The challenge posed by this task lies in the complexity of the density
matrix increasing exponentially with the system size. Here, we develop a variational method to efficiently
simulate the nonequilibrium steady state of Markovian open quantum systems based on variational
Monte Carlo methods and on a neural network representation of the density matrix. Thanks to the
stochastic reconfiguration scheme, the application of the variational principle is translated into the actual
integration of the quantum master equation. We test the effectiveness of the method by modeling the two-
dimensional dissipative XYZ spin model on a lattice.
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Open quantum systems have evolved into a major field
of studies in recent years. Focus of these studies are the
characterization of emergent phenomena and dissipative
phase transitions [1–23], as well as the ongoing debate
about whether quantum computing schemes are still hard to
simulate classically—and thus achieve quantum supremacy
—when in presence of some degree of noise-induced
decoherence [24–27].
Assuming a Markovian interaction with the environ-

ment, the dynamics of open quantum systems is governed
by the quantum master equation in Lindblad form [28].
Only few models within this description admit an analytical
solution [29,30]. The quest for efficient numerical methods
to simulate the dynamics and the asymptotic steady state
resulting from the Lindblad master equation is a research
field that is still in its infancy. Many recent tools have
been developed following in the footsteps of well-
established numerical methods for the simulations of
closed, Hamiltonian quantum systems. In particular,
matrix-product state and tensor network schemes [31–
34], a real-space renormalization approach [35], cluster
mean-field [19], and other ad hoc approximation schemes
[23,36] have recently emerged.
A groundbreaking progress in the numerical simulation

of both the ground state and the dynamics of closed
quantum systems has recently been made with the intro-
duction of the neural-network variational ansatz [37–43],
which efficiently represents highly correlated quantum
states and whose parameters are easily optimized by means
of the variational Monte Carlo (VMC) method. Recently, a
self-adjoint and positive semidefinite parametrization of the
density matrix, in terms of a neural network, has been
introduced [44].

The steady state of an open quantum system can be
characterized by a variational principle [31,33,45,46],
whereby the dissipative part of the real-time dynamics,
under quite general conditions, drives the system towards a
unique steady state in analogy to the imaginary-time
Schrödinger equation that leads to the ground state of
Hamiltonian systems.
In this Letter, we present a VMC approach to simulate

the nonequilibrium steady state (NESS) of open quantum
systems governed by the quantum master equation in
Lindblad form. The density matrix is parametrized using
a neural network ansatz [44] and parameters are varied
using an extension of the stochastic reconfiguration method
[47], which is shown to approximate the real-time dynam-
ics of the system. We apply the present VMC method to
study the steady-state properties of the dissipative XYZ
spin model [19–23] that displays a prototypical second-
order dissipative phase transition. Thanks to the
Monte Carlo sampling of expectation values, this method
holds promise for the efficient simulation of open quantum
systems with a large number of d.o.f.
Dynamics of open quantum systems.—The dynamics of

the density matrix ρ̂ of an open quantum system is
governed by the quantum master equation which—in case
of Markovian coupling to the environment—takes the
Lindblad form

dρ̂
dt

¼ −i½Ĥ; ρ̂� −
X
i

γi
2
½fF̂†

i F̂i; ρ̂g − 2F̂iρ̂F̂
†
i �; ð1Þ

where the curly brackets denote the anticommutator. The
unitary part of the dynamics is generated by the term
depending on the Hamiltonian Ĥ, while F̂i are the jump
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operators associated to the dissipative processes induced by
the environment. The equation is typically expressed in
terms of the Liouvillian superoperator as dρ̂=dt ¼ Lðρ̂Þ,
whose formal solution is ρ̂ðtÞ ¼ eLtρ̂ð0Þ (t > 0). The exis-
tence and uniqueness of a NESS—defined as ρ̂SS ¼
limt→∞ ρ̂ðtÞ—satisfying

Lðρ̂SSÞ ¼ 0 ð2Þ

has been demonstrated under quite general assumptions
[48,49], in particular for finite-size spin and boson latti-
ces [48].
The steady state can be computed as the long-time limit

of the solution of the quantum master equation, or by
directly solving the homogeneous linear system [Eq. (2)]
with an additional condition on the trace of the density
matrix. In both cases, the size of the problem is quantified
by the square of the Hilbert space dimension, thus
becoming computationally prohibitive already for a modest
number of d.o.f. A promising route to the numerical
computation of the NESS is provided by the variational
principle. In cases where a unique steady state exists [48],
the NESS corresponds to the eigenmatrix of the Liouvillian
superoperator L with a zero eigenvalue [49]. As all other
eigenvalues have a strictly negative real part, the NESS can
be formally derived as the matrix that maximizes the real
part of the expectation value (computed in matrix space) of
the Liouvillian.
Neural network density matrix.—We assume that the

Hilbert space of the system is spanned by the computational
basis jσi, where σ ¼ ðσ1; σ2;…; σNÞ labels the states of N
d.o.f. that compose the system. Here and in what follows
we will assume binary local d.o.f, with σi ¼ f−1; 1g,
which applies to the broad class of interacting spin-1=2
or qubit models. The density matrix in this basis is formally
expressed as ρðσ; ηÞ ¼ hσjρ̂jηi in terms of the density
operator ρ̂. We denote a specific variational ansatz for
the density matrix as ρχðσ; ηÞ, where χ ¼ ðχ1; χ2;…; χNp

Þ
is a set of variational parameters.
A neural network ansatz for a self-adjoint, positive

semidefinite density matrix was recently introduced [44]
in the specific form of a restricted Boltzmann machine
(RBM). In a variational approach, RBMs present the
significant advantage that the sum over the hidden-spin
configurations can be carried out analytically, and the
logarithmic derivatives with respect to the variational
parameters admit simple expressions [39]. Here we briefly
describe how this ansatz can be derived from simple
considerations on the density matrix. A self-adjoint, posi-
tive, semidefinite expression for the density matrix is

ρχðσ; ηÞ ¼
XJ
j¼1

pjðχÞψ jðσ; χÞψ�
jðη; χÞ: ð3Þ

The states ψ jðσ; χÞ are not necessarily mutually orthogonal
and the sum extends over J states, with J ≤ d and d ¼ 2N

being the dimension of the Hilbert space under study.
We start by introducing a RBM ansatz for each state

ψ jðσ; χÞ entering Eq. (3). A RBM is composed of two
layers of binary valued nodes (see Fig. 1): a visible layer for
encoding the physical state and a hidden layer. Each node is
associated with a bias (a and b parameters) and nodes in the
different layers are connected via a set of weighted edges
(X parameters). For a large number of hidden nodes, this
structure is known to describe quantum correlations effi-
ciently [38,41].
In order to express the mixed structure in Eq. (3) as a

single RBM, we embed an intermediate set of L hidden
nodes that are used to express the probabilities pjðχÞ in
RBM form as pjðχÞ ¼ expðPl clhlÞ, with hl ¼ �1 and
cl ∈ R. To index the different states in the mixture
accordingly, this new set of hidden nodes must also enter
the RBM expression of the wave functions. When carrying
out the sums over configurations of hidden nodes, the final
expression for the RBM density matrix is [50]

ρχðσ; ηÞ ¼ 8 exp

�X
i

aiσi

�
exp

�X
i

a�i ηi

�

×
YL
l¼1

cosh

�
cl þ

X
i

Wliσi þ
X
i

W�
liηi

�

×
YM
m¼1

cosh

�
bm þ

X
i

Xmiσi

�

×
YM
n¼1

cosh
�
b�n þ

X
i

X�
niηi

�
: ð4Þ

The RBM is sketched in Fig. 1, and χ ¼
fai; bm; Xmi; cl;Wlig is the final set of parameters, which

FIG. 1. Graphical representation of the neural network ansatz
for the density matrix. The input states jσi; jηi are encoded in the
visible layer, represented by circles. The hidden spins in the
triangles encode the correlation between the physical spins in
each state of the statistical mixture, while the hidden spins in the
squares encode the mixture between the states. This structure is
easily seen to coincide with a RBM, where the hidden layer is
composed by the triangle and square nodes.
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are assumed as complex valued with the exception of cl that
must take real values. The representational power of the
RBM is determined by the number of hidden nodes [54].
Here we set the densities of hidden nodes through the
parameters α ¼ M=N, β ¼ L=N, which measure the rep-
resentational power of the RBM ansatz independently of
the size of the spin lattice. When separately accounting for
the real and imaginary parts of complex-valued parameters,
the total number of computational parameters in the RBM
ansatz is Np ¼ N½ðαþ βÞð2N þ 1Þ þ αþ 2�. In what fol-
lows, we will always assume α ¼ β for simplicity.
Optimization.—It is convenient to rewrite Eq. (2) in a

vectorized form by reshaping ρ̂ into a column vector jρi.
Following [45], L takes matrix form and the steady state
density matrix fulfills hρjLjρi ¼ 0. Therefore the expect-
ation value over the variational density matrix ⟪Lχ⟫ ¼
hρχ jLjρχi=hρχ jρχi is a function of the variational param-
eters χ. The parameter values that best approximate
⟪Lχ⟫ ¼ 0 can be found by means of various optimization
procedures [39,42,44,55]. In this Letter, we choose to adopt
the stochastic reconfiguration (SR) scheme by Sorella et al.
[47], which we extend to open quantum systems. The
parameters are initialized to a small random value and, at
each iteration, they are updated as

χðnþ 1Þ ¼ χðnÞ þ νS−1ðnÞFðnÞ; ð5Þ

where the learning rate ν is small enough to guarantee
convergence. It can be shown [50] that the SR scheme
induces, at each iteration, a variation in the parameters that
best approximates the time evolution of the density matrix
over a time step ν. Here, we define the covariance matrix S,
the vector of forces F, and the logarithmic derivatives O as

Okðσ; ηÞ ¼
1

ρχðσ; ηÞ
∂ρχðσ; ηÞ

∂χk ;

FkðnÞ ¼ ⟪O�
kL⟫ − ⟪L⟫⟪O�

k⟫;

Skk0 ðnÞ ¼ ⟪O�
kOk0⟫ − ⟪O�

k⟫⟪Ok0⟫; ð6Þ

where k; k0 ¼ 1; 2;…; Np. The notation ⟪ · ⟫ denotes the
normalized expectation value taken over the variational
density matrix jρχi, and the derivatives Okðσ; ηÞ are taken
as diagonal operators in these expectation values. We point
out that, while the expression for S in Eq. (6) results in the
VMC iterations following the real time evolution, mini-
mization can be achieved by using any positive-definite
covariance matrix. In particular, setting S as the identity
results in the steepest descent procedure. Since S can be
noninvertible, we apply an explicit regularization scheme
as introduced in Ref. [39]: Sregkk0 ¼ Skk0 þ λðnÞδk;k0Skk0 ,
where λðnÞ ¼ maxðλ0bn; λminÞ. For the present calcu-
lations, they were set to λ0 ¼ 100, b ¼ 0.998, and
λmin ¼ 10−2.

Sampling.—The various expectation values in Eq. (6)
must be evaluated at each iteration step. We evaluate these
quantities stochastically over a Markov-chain of NMH
configurations ðσ; ηÞ sampling the square modulus of the
density matrix jρχðσ; ηÞj2. For this we adopt the
Metropolis-Hastings algorithm [53]. In the limit of
NMH → ∞, the statistical error decays as 1=

ffiffiffiffiffiffiffiffiffiffi
NMH

p
.

Choosing an appropriate set of rules for the random walk
is key to an efficient Monte Carlo sampling. Here we
randomly choose each move among those allowed by the
Liouvillian superoperator [50].
Observables.—Once the optimal parameter values have

been determined, the expectation value of any quantum
mechanical observable Ô over the steady state can be
expressed as

hÔi ¼ TrðÔρ̂χÞ ¼
X
σ;η

jρχðσ; ηÞj2
Oðη; σÞ
ρχðσ; ηÞ�

; ð7Þ

which can also be evaluated using the Metropolis-Hastings
algorithm. For all the quantities considered here, the
expectation values were additionally averaged over 100
sets of parameter values χðnÞ chosen in the asymptotic
region of the SR interation in order to improve the statistical
accuracy. The overall error in the sampled observables has,
in addition to the contribution from the Metropolis-
Hastings algorithms, a contribution from the SR scheme
and a systematic contribution related to the representational
power of the RBM ansatz, as measured by the α and β
parameters.
Computational cost.—The number of floating point

operations to evaluate Eq. (6) scales as N3
p, if we assume

that the number of Metropolis-Hastings steps NMH is set to
roughly the number of parameters Np, as in Ref. [39]. The
Metropolis-Hastings procedure also scales with the number
of connected states Nc, i.e., with the average number of
nonzero elements in a column of the Liouvillian matrix.
Finally, the efficiency of the whole procedure thus scales
as OðN3

p þ NpNcÞ.
Results.—To assess the effectiveness of the method, we

study a spin-1=2 XYZ model on a two-dimensional lattice
with periodic boundary condition. Each spin is subject to a
dissipation process into the jσz ¼ −1i state. This model has
been already widely investigated and is known to display a
dissipative phase transition between a paramegnetic and a
ferromagnetic phase [19–23]. The Hamiltonian and the
quantum master equation read (ℏ ¼ 1)

Ĥ ¼
X
hi;ji

ðJxσ̂xi σ̂xj þ Jyσ̂
y
i σ̂

y
j þ Jzσ̂

z
i σ̂

z
jÞ; ð8Þ

dρ̂
dt

¼ −i½Ĥ; ρ̂� − γ

2

X
k

½fσ̂þk σ̂−k ; ρ̂g − 2σ̂−k ρ̂σ̂
þ
k �; ð9Þ
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where σ̂xj , σ̂
y
j , σ̂

z
j are the Pauli matrices, σ̂�j ¼ ðσ̂xj � iσ̂yjÞ=2,

Jα are the coupling constants between nearest neighbor
spins, and γ is the dissipation rate. The excitations in the
system—induced by the anisotropic spin coupling—com-
pete with the isotropic dissipative process, and this com-
petition is at the origin of the dissipative phase transition
[19–23]. The effectiveness of the neural network ansatz is
demonstrated by studying the system observables across a
phase boundary.
In addition to the expectation value ⟪Lχ⟫, we study the

local magnetization

Mz ¼
1

N

XN
i¼1

Trðρ̂σ̂zi Þ; ð10Þ

and the steady state structure factor

SxxSSðkÞ ¼
1

NðN − 1Þ
X
j≠l

e−ik·ðj−lÞhσ̂xj σ̂xl i; ð11Þ

computed for the asymptotic steady state.
Figure 2 shows the convergence of SxxSSðk ¼ 0Þ and

SxxSS(k ¼ ð2π=3; 0Þ) to the exact result for a 3 × 3 lattice, as

α ¼ β are increased. The parameters χ are initialized
randomly and updated at each VMC step according to
the SR scheme [50]. The parameters of the model are
chosen to lie in the vicinity of the dissipative phase
transition, i.e., Jx=γ ¼ 0.9, Jy=γ ¼ 1.2, Jz=γ ¼ 1.0. A clear
convergence towards the exact value upon increasing α ¼ β
is found. The inset in Fig. 2 shows the SR evolution of
Reð⟪Lχ⟫Þ over a typical VMC run. The oscillations at
early times are a feature of the unitary part of the dynamics
in the quantum master equation.
In Fig. 3 we display the magnetization as computed for

different lattice sizes and as a function of the coupling
parameter Jy=γ. For this choice of parameters, a para-to-
ferromagnetic phase transition is expected to occur when
increasing the coupling through the value Jy⪆1.04 [21,22],
while a second phase boundary between a ferromagnetic
and a paramagnetic region has been predicted by cluster
mean-field calculations at around Jy⪆1.4. For 2 × 2 and
3 × 3 lattices, the VMC result agrees well with the exact
calculation for a large enough number of variational
parameters.
In Fig. 4 we display the spin structure factor SxxSSðk ¼ 0Þ

for the same parameters as in Fig. 3. The quantity
SxxSSðk ¼ 0Þ vanishes when in a paramagnetic phase, while
it takes a finite value in the ferromagnetic region of the
phase diagram. This behavior is displayed both by the exact
calculation for small lattices, and by the VMC data, in the
vicinity of the phase boundary at Jy⪆1.04. For values
Jy > 1.4 the system should become again paramagnetic in
the thermodynamic limit of large lattices, but this feature
was not displayed by the present data up to the largest

FIG. 2. The steady state spin structure factor SxxSSðkÞ computed
as a function of α ¼ β for a 3 × 3 lattice and k ¼ 0 (upper panel)
and k ¼ ð2π=3; 0Þ (lower panel). The red dot-dashed line
represents in both panels the exact result. The inset shows the
evolution of ⟪Lχ⟫ over the VMC run. Parameters: Jx=γ ¼ 0.9,
Jy=γ ¼ 1.2, Jz=γ ¼ 1.0.

FIG. 3. The magnetization Mz computed as a function of the
coupling Jy=γ. VMC and exact values are compared. Error bars,
when not shown, are smaller than the symbol. Other parameters:
Jx=γ ¼ 0.9, Jz=γ ¼ 1.0, α ¼ β ¼ 3.
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lattice under study, in agreement also with recent stochastic
Gutzwiller calculations [23].
In all the calculations, special care was devoted to the

choice of the SR time step ν. The unitary part of the real-
time dynamics generated by Eq. (1) makes the differential
equation stiff, thus requiring to scale down ν appropriately
as the system size—and thus the spectral width of the
differential operator—is increased. A possible workaround
would be to study an effective, purely dissipative dynamics
using the superoperator L†L as a generator. In the case of a
unique steady state, this superoperator is self-adjoint and
positive semidefined, with the only null eigenvalue being
associated to the steady-state solution. We argue that this
effective dynamics would be more robust to the choice of
the time step. The superoperator L†L is however less sparse
than L on the computational basis, calling for an efficient
sampling scheme.
Existing numerical approaches to the simulation of the

steady state of a Markovian open quantum system either
require the full representation of the Hilbert space into
memory, or rely on a properly chosen truncation of the
Hilbert space to a relevant subspace. The present VMC
approach is free of these two limitations, thanks to the
stochastic evaluation of expectation values by means of the
Metropolis-Hastings algorithm. The neural network ansatz
in terms of a RBM is highly representative of quantum
correlated statistical mixtures, while being simple to handle
numerically. In cases with very strong quantum correla-
tions, this ansatz could be extended to deep network
representations, as was recently done in the case of
Hamiltonian problems [37,38,43,56]. For some of these
networks [56], the hidden d.o.f. can still be summed
analytically, as for RBMs. Neural network representations

are not restricted to spin d.o.f. and have been successfully
adopted to represent bosonic many-body states efficiently
[57]. For these reasons, the present VMC approach may
emerge as the election tool to numerically model open
quantum systems, with considerable impact on the study of
fundamental physics and on the modeling of near-term,
noisy quantum information platforms [27].

We are indebted to Giuseppe Carleo and Markus
Holzmann for enlightening discussions. The work was
supported by the Swiss National Science Foundation
through Project No. 200021_162357 and 200020_185015.

Note added.—While developing the present result, we
became aware of three related independent works that
have been carried out in parallel [58–60].
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