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We present a procedure to accelerate the relaxation of an open quantum system towards its equilibrium
state. The control protocol, termed the shortcut to equilibration, is obtained by reverse-engineering the
nonadiabatic master equation. This is a nonunitary control task aimed at rapidly changing the entropy of the
system. Such a protocol serves as a shortcut to an abrupt change in the Hamiltonian, i.e., a quench. As an
example, we study the thermalization of a particle in a harmonic well. We observe that for short protocols
the accuracy improves by 3 orders of magnitude.
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Introduction.—Equilibration is a natural process,
describing the return of a perturbed system back to a
thermal state. The relaxation to equilibrium is present in
both the classical [1–3] and quantum [4] regimes. Gaining
control over the relaxation rate is crucial for enhancing the
performance of quantum heat devices [5–9]. In addition,
fast relaxation is beneficial for quantum state preparation
[10,11] and open system control [12–17]. To address these
issues, we present a scheme to accelerate the equilibration
of an open quantum system, serving as a shortcut to the
natural relaxation time τR. The protocol is termed shortcut
to equilibration (STE).
This control problem is embedded in the theory of open

quantum systems [4]. The framework of the theory assumes
a composite system, partitioned into a system and an
external bath. The Hamiltonian describing the evolution
of the composite system reads ĤðtÞ ¼ ĤSðtÞ þ ĤB þ ĤI ,
where ĤSðtÞ is the system Hamiltonian, ĤB is the bath
Hamiltonian, and ĤI is the system-bath interaction term.
When the system depends explicitly on time, the driving
protocol influences the system-bath coupling operators and
consequently, the relaxation time.
Quantum control in open systems has been addressed

utilizing measurement and feedback [18–23]. Typically,
the effect of nonadiabatic driving on the dissipative
dynamics was ignored [24–27]. Here, we present a
comprehensive theory that incorporates the nonadiabatic
effects. The formalism is based on the recent derivation of
the nonadiabatic master equation (NAME) [28]. This
master equation is of the Gorini-Kossakowski-Lindblad-
Sudarshan (GKLS) form, guaranteeing a complete pos-
itive trace-preserving dynamical map [29–31]. A further
prerequisite is the inertial theorem [32]. This theorem
allows extending the validity of the NAME for processes
with small “acceleration” of the external driving.

We consider a driven quantum system, the Hamiltonian
of which varies from ĤSð0Þ to a final Hamiltonian ĤSðtfÞ,
while coupled to a thermal bath (Fig. 1). Our aim is to
exploit the nonadiabatic effects of the driving to accelerate
the system’s return to equilibrium. By reverse engineering
the NAME, we find a protocol that transforms the thermal
state of ĤSð0Þ at temperature T to the corresponding
thermal state of ĤSðtfÞ.
Controlling the equilibration rate differs from the control

tasks treated by shortcuts to adiabaticity [33–42]. The latter
protocols generate an entropy-preserving unitary trans-
formation, which is effectively the identity map between
initial and final diagonal states in the energy representation.
Conversely, the STE procedure is a nonunitary transfor-
mation, which is designed to rapidly change the entropy of
the system.

FIG. 1. Scheme of the shortcut to equilibration protocol (curved
red line) and the quench protocol (blue step line), transforming an
initial thermal state at temperature T and frequency ωi to a final
thermal state with an equivalent temperature and frequency ωf.
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System dynamics.—We consider a quantum particle in
contact with a thermal bath while confined by a time-
dependent harmonic trap. The system Hamiltonian reads

ĤSðtÞ ¼
P̂2

2m
þ 1

2
mω2ðtÞQ̂2; ð1Þ

where Q̂ and P̂ are the position and momentum operators,
respectively, m is the particle mass, and ωðtÞ is the time-
dependent oscillator frequency. We assume a Bosonic bath
with 1D Ohmic spectral density and an interaction
Hamiltonian of the form ĤI ¼ −D̂ ⊗ B̂, where D̂ ¼ dâþ
d�â† (a and a† are the annihilation and creation operators of
the oscillator, respectively), d is the interaction strength,
and B̂ is the bath interaction operator. Throughout the
Letter, we choose units related to the minimum frequency
ωmin, time 2π=ωmin, and energy ℏωmin with ℏ ¼ 1.
At initial time, the open quantum system is in equilib-

rium with the bath, and the state is of a Gibbs canonical
form ρ̂Sð0Þ ¼ Z−1e−ĤSð0Þ=kBT , where Z is the partition
function, kB is the Boltzmann constant, and T is the
temperature of the bath. We search for a protocol that
varies the Hamiltonian toward ĤSðtfÞ with a target thermal

state ρ̂ThS ðtfÞ ¼ Z−1e−ĤSðtfÞ=kBT . This procedure serves as a
shortcut to an isothermal process. The accuracy of this
transformation can be quantified using the fidelity F, a
measure of the distance between the final state ρ̂SðtfÞ of the
protocol and ρ̂ThS ðtfÞ [43–48]. A classical analogous prob-
lem has been addressed by Martinez et al. [3].
The most straightforward protocol is a quench protocol.

“Quench” means abruptly changing the Hamiltonian from
HSð0Þ to HSðtfÞ, and then letting the system equilibrate
with the bath [49,50]; cf. Supplemental Material III [51].
We assume the open system dynamics are Markovian,
safeguarding the relaxation of the Harmonic oscillator
towards a thermal state. When ĤSð0Þ and ĤSðtfÞ do not
commute, which is the case for a nonrigid harmonic
oscillator, such a sudden change generates coherence in
the energy basis, leading to deviations from equilibrium.
The quenched system relaxes at an exponential rate toward
equilibrium, which leads to an asymptotic exponential
convergence of the fidelity toward unity 1 − F ðtÞ ∝ e−kt,
for t=k > 1, with k ¼ k↓ − k↑, where k↓ and k↑ are decay
rates; cf. Supplemental Material IIIA [51]. We use the
quench protocol as a benchmark to assess the STE
protocol’s performance.
To describe the reduced dynamics under the STE, we

follow the derivation presented in Refs. [28,32]. First, we
obtain a solution for the unitary propagator ÛSðt; 0Þ for a
protocol determined by a constant adiabatic parameter
μ ¼ _ω=ω2. The closed-form solution of ÛSðt; 0Þ allows
constructing a master equation that includes the bath’s
influence on the reduced dynamics. Then, by utilizing the
inertial theorem, we extend the description to protocols

where μ varies slowly (dμ=dt ≪ 1). This condition sets a
lower bound for the minimum protocol duration. For
protocols faster than the minimum time, the condition
dμ=dt ≪ 1 is no longer satisfied and the inertial approxi-
mation loses its validity [32,52]. The bound is given by
tf > fmaxsfð1=ωÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ω00ðsÞ=2ω�½1=ð8 − μ2Þ�

p
g, where s ¼

t=tf and f < 1 is a small scalar, dependent on the desired
precision; cf. Supplemental Material II [51]. For example,
if f ¼ 0.05, the lower bound is tf > 4.38ð2π=ωminÞ,
where ωmin ¼ 5 a:u:.
The range of validity of the NAME sets a number of

conditions: (i) weak coupling between system and bath,
which also allows for a reduced description of the system’ s
dynamics in terms of ρ̂S [4]; (ii) Markovianity [53];
(iii) large Bohr frequencies relative to the relaxation rate
τR; (iv) slow driving relative to the decay of the bath
correlations. In the following, we consider a regime where
the NAME and the inertial theorem are valid.
The dynamics of the externally driven open quantum

system, in the interaction representation, is described by

d
dt

ρ̃SðtÞ ¼ k↓ðtÞ
�
b̂ρ̃SðtÞb̂† −

1

2
fb̂†b̂; ρ̃SðtÞg

�

þ k↑ðtÞ
�
b̂†ρ̃SðtÞb̂ −

1

2
fb̂b̂†; ρ̃SðtÞg

�
: ð2Þ

Here, the density operator in the interaction picture reads
ρ̃SðtÞ ¼ ÛSðt; 0Þρ̂SðtÞÛ†

Sðt; 0Þ.

k↓ðtÞ ¼ k↑ðtÞeαðtÞ=kBT ¼ αðtÞjd⃗j2
4πε0κℏc

ð1þ NðαðtÞÞÞ; ð3Þ

where N is the occupation number of the Bose-Einstein
distribution and α is a modified frequency, determined by
the nonadiabatic driving protocol and κ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − μ2

p
[28].

In terms of the oscillator frequency, the modified frequency
is given by

αðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð _ωðtÞ=ð2ω2ðtÞÞÞ2

q
ωðtÞ: ð4Þ

The Lindblad jump operators become b̂≡ b̂ð0Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½mωð0Þ=κℏ�p ðκ þ iμ=2ÞðQ̂ð0Þ þ ½μþ iκ=2mωð0Þ�P̂ð0ÞÞ.
In the interaction representation the Lindblad operators

are time independent. This property provides an explicit
solution in terms of the second-order moments B ¼
fb̂†b̂; b̂2; b̂†2g [28,32], cf. Supplemental Material I [51],
which, together with the identity operator, form a closed
Lie algebra. The solution is given by a generalized
canonical state, which has a Gaussian form in terms of
B. Such states are canonical invariant under the dynamics
described by Eq. (2), implying that the system can be
described by the generalized canonical state throughout the
entire evolution [54–57]. The system state in the interaction
representation is given by
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ρ̃SðtÞ ¼ Z−1eγðtÞb̂
2

eβðtÞb̂
†b̂eγ

�ðtÞb̂†2 ; ð5Þ

which is completely defined by the time-dependent coeffici-
ents γ and β and the driving protocol. The partition function
reads Zðβ; γÞ ¼ ½e−β=ðe−β − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4jγj2=ðe−β − 1Þ2

p
�. In

the adiabatic limit, the adiabatic parameter μ approaches
zero, the state follows the adiabatic solution, and
b̂†b̂ → â†â.
Substituting ρ̃SðtÞ into the master equation, Eq. (2),

multiplying by ρ̃−1S from the right and comparing the terms
proportionate to the operators b̃†b̃, b̃2, and b̃†2 leads to

_β ¼ k↓ðeβ − 1Þ þ k↑ðe−β − 1þ 4eβjγj2Þ;
_γ ¼ ðk↓ þ k↑Þγ − 2k↓γe−β: ð6Þ

These equations describe the evolution of the system for
any initial squeezed thermal state. Here, we assume that the
system is in a thermal state at the initial time, which infers
γð0Þ ¼ 0. This simplifies the expression of the state to

ρ̃SðβðtÞ; μðtÞÞ ¼ Z−1eβb̂
†b̂ðμÞ; ð7Þ

and, consequently, the system dynamics are described by a
single nonlinear differential equation

_β ¼ k↓ðtÞðeβ − 1Þ þ k↑ðtÞðe−β − 1Þ; ð8Þ

with initial conditions βð0Þ ¼ −½ℏωð0Þ=kBT� and μð0Þ ¼ 0.
Equation (8) constitutes the basis for the suggested control
scheme.
Control.—The control target is to transform a thermal

state, defined by frequency ωi, to a thermal state of
frequency ωf, while interacting with a bath at temperature
T. The control utilizes the fact that at all times, the state is
fully defined by μðtÞ and βðtÞ. This property implies
βð0Þ ¼ −ðℏωi=kBTÞ, βðtfÞ ¼ −ðℏωf=kBTÞ, and μð0Þ ¼
μðtfÞ ¼ 0. The initial and final β are connected through
Eq. (8), where the protocol defines the rates k↑ðtÞ and
k↓ðtÞ. These rates are determined by the parameter αðtÞ in
Eq. (3), which in turn is completely defined by the control
parameter ωðtÞ in Eq. (4). Furthermore, μðtÞ is determined
by ωðtÞ, and therefore ωðtÞ fully determines the state of the
system at all times.
The strategy to solve the control equation is based on a

reverse-engineering approach, and the protocol is denoted
by the shortcut to equilibration. The method proceeds as
follows: we define a new variable y ¼ eβ, and propose an
ansatz for y that satisfies the boundary conditions. Then we
solve for αðtÞ, and from αðtÞ determine ωðtÞ.
The initial and final thermal states determine the boun-

dary conditions of μðtÞ, which implies that the state is
stationary at initial and final times. This leads to additional
boundary conditions _βð0Þ ¼ _βðtfÞ ¼ _αð0Þ ¼ _αðtfÞ ¼ 0.

When μ ¼ 0 ( _ω ¼ 0) the Lindblad jump operator b̂
converges to the annihilation operator â. This implies that
the final state is a thermal state with a frequency ωf at a
temperature T [58].
A fifth-degree polynomial is sufficient to obey all of the

constraints. Introducing s ¼ t=tf, the solution reads

yðsÞ ¼ yð0Þ þ c3s3 þ c4s4 þ c5s5; ð9Þ
where c3 − c5 are determined from the boundary condi-
tions yð0Þ ¼ eβð0Þ, yðtfÞ ¼ eβðtfÞ, _yð0Þ ¼ _yðtfÞ ¼ ÿð0Þ ¼
ÿðtfÞ ¼ 0. In principle, more complicated solutions for
Eq. (8) exist; however, here we restrict the analysis to a
polynomial solution [59]. The implicit equation for αðtÞ
becomes

tf
d
ds

yðsÞ ¼ k↓ðαðsÞÞyðsÞ2 − yðsÞðk↓ðαðsÞÞ
þ k↑ðαðsÞÞÞ þ k↑ðαðsÞÞ: ð10Þ

Solving the equation by numerical means generates αðsÞ.
This solution is substituted into Eq. (4) and the control ωðtÞ
is obtained by an iterative numerical procedure. The
protocol satisfies the inertial condition on μ, inferring that
the derivation is self-consistent.
The solution of the STE incorporates the adiabatic result

in the limit of slow driving. For large protocol time duration
(tf → ∞), the system’s instantaneous state is a thermal state
at temperature T with frequency ωðtÞ, (Supplemental
Material V [51]). A similar derivation can be obtained
for a SU(2) algebra, see Supplemental Material VII [51].

(a)

(c)

(b)

(d)

FIG. 2. Control protocols as a function of the scaled time t=tf:
(a),(b) the oscillator frequency ω and (c),(d) energy for the STE
(red line), quench (dashed blue line), and adiabatic (dot-dashed
green line) protocols. (a),(c) Expansion, and (b),(d) compression
protocols. The dynamics of the STE and quenched systems are
shown for tf ¼ 8 a:u:, and the adiabatic dynamics are obtained in
the limit tf → ∞. (c),(d) Inset: details of the final approach to the
target state. Model parameters (atomic units): ωð0Þ=ωf ¼ 5=10
for the compression, and reverse for the expansion and bath
temperature T ¼ 2.
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We compare the STE protocol to a quench protocol
involving a sudden change from ωð0Þ ¼ ωi to ωðtfÞ ¼ ωf.
Two cases are studied, a compression of the potential,
which corresponds to the transition ωð0Þ ¼ 5 → ωðtfÞ ¼
10, and a reversed expansion, associated with the transition
ωð0Þ ¼ 10 → ωðtfÞ ¼ 5. Both protocols are presented in
Fig. 2 panels (a) and (b). We add, as a reference, an
adiabatic process obtained in the limit tf → ∞. The initial
stage of the quench protocol is effectively isolated, as the
change in frequency is rapid relative to the relaxation rate
toward equilibrium. As a result, the state stays constant
while the Hamiltonian abruptly transforms to ĤSðtfÞ.
Coherence is generated with respect to ĤSðtfÞ, because
½ĤSð0Þ; ĤSðtfÞ� ≠ 0. After the initial stage energy is
exchanged with the bath and the coherence dissipates.
In Fig. 3, we compare the fidelity with respect to the

target thermal state of the expansion and compression
protocols, for increasing stage times tf. The STE protocol
transfers the system to the target thermal state with fidelities
close to unity F ≈ 1, while the quench target has lower
fidelity due to the slow relaxation. Therefore, the STE
protocol equilibrates the system faster and with higher
accuracy than the quench protocol. For a given fidelity, the
STE achieves the target state up to five times faster than the
quench protocol.
Figures 2(c) and 2(d) present a comparison of the

quantum state’s energy for the STE, quench, and adiabatic
protocols. During the quench protocol, there is a sudden
change in the energy, which is followed by a slow
exponential decay toward the thermal energy. The adiabatic
and STE protocols are characterized by an overshoot
beyond the final thermal energy. In the final stage of the
STE protocol, the energy rapidly converges to the desired
thermal energy, whereas the quenched system remains far
from equilibrium (Fig. 2).
Energy and entropy cost.—A control task can be

evaluated by the work and entropy cost required to

implement the control. Restrictions on the cost can be
connected to quantum friction [8,62], which implies that
quicker transformations are accompanied by a higher
energy cost [38,63–66]. Moreover, in any externally con-
trolled process there is an additional cost in energy and
entropy to generate faster driving [67,68]. The work cost
for the STE protocol with a duration time t is defined
by WðtÞ ¼ R

t
0 trfρ̂Sðt0Þ½∂Ĥðt0Þ=∂t0�gdt0.

For the quench protocol, the sudden transition occurs on
a much faster timescale than the exchange rate of energy
with the bath. This implies that the change in internal
energy is equal to the work cost. For the expansion stroke
(Fig. 4) work is generated by the system. The minimum
work is achieve for the quench protocol, the STE is superior
and the optimal work is obtained in the adiabatic limit.
When the system is compressed, the STE and quench
protocols require additional work compared to the adiabatic
process. This result is in accordance with thermodynamic
principles, as any rapid driving will induce irreversible
dynamics, which in turn leads to suboptimal performance.
For long times, the work of the STE procedure approaches
the adiabatic result according to a t−1 scaling law. At this
limit, the global entropy production approaches zero. For
shorter times, the system entropy change, for the STE
procedure, is almost independent of protocol duration as a
result of the accurate control. The price for shorter proto-
cols is an increase in irreversibility, manifested by larger
global entropy production (Supplemental Material VI [51]).
Discussion.—Quantum control is achieved by manipu-

lating the system Hamiltonian via a change of an external
control parameter. In turn, the change in the system
Hamiltonian influences the system-bath interaction and
the equation of motion. Hence, manipulating the
Hamiltonian indirectly controls the dissipation rate.
The control procedure is based on canonical invariance,

where the state of the system can be described by a
generalized Gibbs state, Eq. (5), throughout the process.
This description requires that the system dynamics are
characterized by a closed Lie algebra. The algebraic
structure is also incorporated in the equations of motion,
it forms the basis for the inertial theorem and, consequently,
to the nonadiabatic master equation, Eq. (2) [28].

(a) (b)

FIG. 3. The fidelity of the final state relative to the target
thermal state for the shortcut to equilibration (red) and quench
(blue) protocols. (a) Expansion protocol and (b) compression
protocol. The error of the STE is dominated by the accuracy of
the inertial solution (Supplemental Material VI [51]). The
fidelity was therefore estimated from the deviation between
the inertial solution and the exact free propagation. The inset
shows the accuracy A ¼ − log10ð1 − F Þ, highlighting the three-
digit accuracy of the STE protocol. Model parameters are the
same as in Fig. 2.

FIG. 4. Work required to perform the driving protocol as a
function of the normalized time. Model parameters are identical
to Fig. 3. Upper part, compression; lower part, expansion.
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Substituting the generalized canonical form in the
equation of motion, Eq. (2), leads to a set of coupled
nonlinear differential equations of the state parameters γ
and β, which define the generalized canonical state, Eq. (5).
These equations completely describe the system dynamics
and implicitly depend on the control parameter ωðtÞ. They
are the basis for the control procedure.
The open-system protocol controls both the system’s

entropy and the coherence in the instantaneous energy
representation. In contrast a unitary control leaves the
system’s entropy invariant. For example, the unitary short-
cut to adiabaticity protocol controls only the final coher-
ence in free dynamics (Supplemental Material VII [51]).
At first glance, it would seem that the quench protocol is

optimal, since the approach to equilibrium is exponentially
fast. However, a superior solution is obtained by the
STE protocol. The advantage of the latter is that it
incorporates both the dissipative and unitary parts of the
dynamics, changing the rates and engineering the state
simultaneously.
The STE protocol can be generalized beyond the

isothermal example studied here, for three different kinds
of scenarios: (i) the temperature of the initial state differs
from the bath temperature; (ii) the case of varying bath
temperature [with the help of Eq. (3)]; (iii) the squeezed
initial and final states. These general control tasks should
be approached by reverse engineering of β. Furthermore,
once a nonadiabatic master equation is obtained [28,32],
the method can be generalized to systems characterized by
a closed Lie algebra, e.g., the SU(2) algebra; see
Supplemental Material VII [51].
To conclude, the STE result demonstrates the feasibility

of controlling the entropy of an open quantum system. Such
control can be combined with fast unitary transformations
to obtain a broad class of states within the system algebra.
This will pave the way to faster high-precision quantum
control, altering the state’s entropy.
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and S. Ciliberto, Nat. Phys. 12, 843 (2016).

[4] H.-P. Breuer, F. Petruccione et al., The Theory of Open
Quantum Systems (Oxford University Press on Demand,
Oxford, 2002).

[5] R. Alicki, J. Phys. A 12, L103 (1979).
[6] R. Kosloff and Y. Rezek, Entropy 19, 136 (2017).
[7] E. Geva and R. Kosloff, J. Chem. Phys. 96, 3054

(1992).
[8] T. Feldmann and R. Kosloff, Phys. Rev. E 68, 016101

(2003).
[9] S. Dambach, P. Egetmeyer, J. Ankerhold, and B. Kubala,

Eur. Phys. J. Spec. Top. 227, 2053 (2019).
[10] F. Verstraete, M. M. Wolf, and J. I. Cirac, Nat. Phys. 5, 633

(2009).
[11] J. Ye, H. Kimble, and H. Katori, Science 320, 1734

(2008).
[12] C. P. Koch, J. Phys. Condens. Matter 28, 213001 (2016).
[13] A. Blaquiere, S. Diner, and G. Lochak, Information Com-

plexity and Control in Quantum Physics (SpringerVerlag,
New York, 1987).

[14] G. M. Huang, T. J. Tarn, and J. W. Clark, J. Math. Phys.
(N.Y.) 24, 2608 (1983).

[15] R. W. Brockett, R. S. Millman, and H. J. Sussmann,
Progress of mathematics 27, 181 (1983).

[16] D. d’Alessandro, Introduction to Quantum Control and
Dynamics (Chapman and Hall/CRC, New York, 2007).

[17] C. Brif, R. Chakrabarti, and H. Rabitz, New J. Phys. 12,
075008 (2010).

[18] S. Lloyd and L. Viola, arXiv:quant-ph/0008101.
[19] L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett. 82, 2417

(1999).
[20] B.-H. Liu, L. Li, Y.-F. Huang, C.-F. Li, G.-C. Guo, E.-M.

Laine, H.-P. Breuer, and J. Piilo, Nat. Phys. 7, 931 (2011).
[21] K. Khodjasteh, D. A. Lidar, and L. Viola, Phys. Rev. Lett.

104, 090501 (2010).
[22] R. Schmidt, A. Negretti, J. Ankerhold, T. Calarco, and J. T.

Stockburger, Phys. Rev. Lett. 107, 130404 (2011).
[23] C. Altafini, Phys. Rev. A 70, 062321 (2004).
[24] G. Vacanti, R. Fazio, S. Montangero, G. Palma, M.

Paternostro, and V. Vedral, New J. Phys. 16, 053017 (2014).
[25] N. Suri, F. C. Binder, B. Muralidharan, and S.

Vinjanampathy, arXiv:1711.08776.
[26] J. Jing, L.-A.Wu, M. S. Sarandy, and J. G. Muga, Phys. Rev.

A 88, 053422 (2013).
[27] M. Scandi and M. Perarnau-Llobet, arXiv:1810.05583.
[28] R. Dann, A. Levy, and R. Kosloff, Phys. Rev. A 98, 052129

(2018).
[29] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
[30] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math.

Phys. (N.Y.) 17, 821 (1976).
[31] R. Alicki, in Quantum Dynamical Semigroups and Appli-

cations (Springer, New York, 2007), pp. 1–46.
[32] R. Dann and R. Kosloff, arXiv:1810.12094.
[33] M. Demirplak and S. A. Rice, J. Phys. Chem. A 107, 9937

(2003).
[34] M. Berry, J. Phys. A 42, 365303 (2009).
[35] X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D.
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