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Collective behavior in large ensembles of dynamical units with nonpairwise interactions may play an
important role in several systems ranging from brain function to social networks. Despite recent work
pointing to simplicial structure, i.e., higher-order interactions between three or more units at a time, their
dynamical characteristics remain poorly understood. Here we present an analysis of the collective dynamics
of such a simplicial system, namely coupled phase oscillators with three-way interactions. The simplicial
structure gives rise to a number of novel phenomena, most notably a continuum of abrupt desynchroniza-
tion transitions with no abrupt synchronization transition counterpart, as well as extensive multistability
whereby infinitely many stable partially synchronized states exist. Our analysis sheds light on the
complexity that can arise in physical systems with simplicial interactions like the human brain and the role
that simplicial interactions play in storing information.
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Research into the macroscopic dynamics of large ensem-
bles of coupled oscillators have extended our understand-
ing of natural and engineered systems ranging from cell
cycles to power grids [1–5]. However, with few exceptions
(including Refs. [6–8]), little attention has been paid to the
synchronization dynamics of coupled oscillator systems
where interactions are not pair wise, but rather n way, with
n ≥ 3. Such interactions are called “simplicial,” where an n
simplex represents an interaction between nþ 1 units, so 2
simplexes describe three-way interactions, etc. [9] Recent
advances suggest that simplicial interactions may be vital in
general oscillator systems [10–12] and may play an
important role in brain dynamics [13–15] and other com-
plex systems phenomena such as the dynamics of collab-
orations [16] or social contagion [17]. In particular,
interactions in 2 simplexes (named holes or cavities) are
important because they can describe correlations in neuro-
nal spiking activity (which can be mapped to phase
oscillators [18]) in the brain [19] providing a missing link
between structure and function. In fact, coupled oscillator
systems that display clustering and multibranch entrain-
ment have been shown to be useful models for memory
and information storage [20–26]. Despite these findings,
the general collective dynamics of coupled oscillator
simplexes and their utility in storing information are poorly
understood.
In this Letter. we study large coupled oscillator simplicial

complexes, considering the impact of 2 simplexes, i.e.,
three-way interactions, on collective behavior. Specifically,
we consider the 2- and 1-simplex multilayer system
given by

_θi ¼ ωi þ
K
N2

XN
j¼1

XN
k¼1

sinðθj þ θk − 2θiÞ; ð1Þ

ϕi ¼ νi þ
κ

N

XN
j¼1

sinðϕj − ϕiÞ þ d sinðθi − ϕiÞ: ð2Þ

The dynamics in the θ layer are the natural generalization
of the classical Kuramoto model [27] with 2-simplex
interactions (namely, coupling is sinusoidal and diffusive),
where θi represents the phase of oscillator i with i ¼
1;…; N, ωi is its natural frequency which is assumed to be
drawn from the distribution gðωÞ, and K is the global
coupling strength. The θ oscillators then drive a population
of ϕ oscillators in another layer, for which a one-to-one
correspondence exists following a multiplex structure [28].
Specifically, the ϕ oscillators evolve subject to the classical
Kuramoto model (with natural frequencies νi and coupling
strength κ), but with an additional driving term with
strength d. While numerical investigations of systems with
nonpairwise interactions have uncovered multistability and
chaos [6–8], few analytical results exist and their collective
behavior remains largely unexplored. Here we focus on
large systems and obtain an analytical description of the
macroscopic dynamics using a partial dimensionality
reduction obtained via a variation of the Ott-Antonsen
ansatz [29,30]. In particular, the 2-simplex macroscopic
dynamics are captured by a combination of two order
parameters that capture the degree of synchronization
and asymmetry as oscillators organize into two distinct
synchronized clusters. Here, clustering refers to multiple
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phase-locked groups [20,25] at different locations on
the circle rather than distinct groups of identically
synchronized oscillators [31]. We uncover a novel phe-
nomenon where a continuum of abrupt desynchronization
transitions emerge, each at a different critical coupling
strength, depending on the asymmetry of the system.
Interestingly, no complementary abrupt synchronization
transitions occur [32,33]. This continuum stems from an
extensive multistability whereby, for sufficiently strong
coupling, an infinite number of distinct partially synchron-
ized states are stable in addition to the incoherent state,
which is stable for all finite coupling strengths. This
multistability indicates the capability of storing a wide
array of possible information as different oscillator arrange-
ments. Serving as a minimal model for memory storage, the
system captures the critical properties of easily transition-
ing from an information storage state (i.e., synchronized) to
the resting state (i.e., incoherent) [34] via abrupt desynch-
ronization. The system then may return to another infor-
mation storage state with an appropriately chosen
perturbation. Moreover, the 1-simplex layer can similarly
store information provided that the driving strength from
the 2-simplex layer is sufficiently strong. The rich non-
linear dynamics that emerge in this relatively simple
extension of pair-wise coupling to three-way coupling
highlights the complexity that may arise via simplicial
interactions in systems like the human brain and the
implications of these behaviors on information storage.
Noting that the dynamics of the 1-simplex layer in

Eq. (2) are driven by the dynamics of the 2-simplex
layer in Eq. (1), we focus of the θ layer and introduce
the generalized order parameters zq ¼ ð1=NÞPN

j¼1 e
qiθj

for q ¼ 1 and 2. Note that z1 is the classical Kuramoto
order parameter while z2 typically measures clustering,
which we will see in this system. Using the polar decom-
positions zq ¼ rqeiψq we rewrite Eq. (1) as

_θi ¼ ωi þ Kr21 sin½2ðψ1 − θiÞ�: ð3Þ

We then consider the continuum limitN → ∞where the state
of the system can be described by a density function
fðθ;ω; tÞ, which describes the density of oscillator with
phase between θ and θ þ δθ andnatural frequency betweenω
andωþ δω at time t. Because the number of oscillators in the
system is conserved, f must satisfy the continuity equation
0 ¼ ∂tf þ ∂θðf _θÞ.Moreover, because each oscillator’s natu-
ral frequency is fixed and drawn from gðωÞ the density
function fðθ;ω; tÞ may be expanded into a Fourier series
of the form fðθ;ω; tÞ ¼ ½gðωÞ=2π�½1þP∞

n¼1 f̂nðω; tÞ×
einθ þ c:c:�, where f̂nðω; tÞ is the nth Fourier coefficient
and c.c. represents the complex conjugate of the previous
sum.
We then consider the symmetric and asymmetric parts

fsðθ;ω; tÞ and faðθ;ω; tÞ, respectively, of fðθ;ω; tÞ which

satisfy fðθ;ω; tÞ ¼ fsðθ;ω; tÞ þ faðθ;ω; tÞ with sym-
metries fsðθ þ π;ω; tÞ ¼ fsðθ;ω; tÞ and faðθ þ π;ω; tÞ ¼
−faðθ;ω; tÞ. Note that the linearity of the continuity
equation implies that if both fs and fa are solutions, then
so is f. While the asymmetric part fa does not allow for
dimensionality reduction, the symmetric part fs does.
Noting that the Fourier series of fs is given by the even
terms of the Fourier series of f, i.e., fsðθ;ω; tÞ ¼
½gðωÞ=2π�½1þP∞

m¼1 f̂2mðω; tÞe2imθ þ c:c:�, we make the
ansatz that each even Fourier coefficient decays geomet-
rically, i.e., f̂2mðω; tÞ ¼ amðω; tÞ [29,30]. Inserting this
and Eq. (2) into the continuity equation, we find that
each subspace spanned by even terms e2imθ collapse onto
the same low-dimensional manifold characterized by the
condition

∂ta ¼ −2iωaþ Kðz�21 − z21a
2Þ: ð4Þ

Equation (4) describes the evolution of the complex
function aðω; tÞ, and thereby fs, and depends on the
order parameter z1. Moreover, aðω; tÞ can be linked
to the order parameter z2 as follows. First, note that in
the limit N → ∞ we have that z2 ¼ ∬ fsðθ;ω; tÞe2iθdθdω,
and after inserting the Fourier series for fs this reduces to
z2 ¼

R
gðωÞa�ðω; tÞdω. To further simplify the relationship

we make the assumption that the frequency distribution
gðωÞ is Lorentzian with mean ω0 and spread Δ, i.e.,
gðωÞ ¼ Δ=fπ½ðω − ω0Þ2 þ Δ2�g, which has two simple
poles in the complex plane at ω ¼ ω0 � iΔ. The integral
can then be evaluated using Cauchy’s Residue Theorem
[35] by closing the integral contour with a semicircle of
infinite radius in the lower-half plane and evaluating at the
enclosed pole, yielding z2 ¼ a�ðω0 − iΔ; tÞ. We then
evaluate Eq. (4) at ω ¼ ω0 − iΔ to obtain

_z2 ¼ 2iω0z2 − 2Δz2 þ Kðz21 − z�21 z22Þ: ð5Þ

Next we introduce the rescaled parameters K̃ ¼ K=Δ and
ω̃0 ¼ ω0=Δ with rescaled time t̃ ¼ Δt, then use polar
decompositions, yielding (where we have dropped the ∼
notation for convenience)

_r2 ¼ −2r2 þ Kr21ð1 − r22Þ cosð2ψ1 − ψ2Þ; ð6Þ

_ψ2 ¼ 2ω0 þ Kr21
1þ r22
r2

sinð2ψ1 − ψ2Þ: ð7Þ

Equations (6) and (7) describe the dynamics of the even
part fs, which falls onto a low dimensional manifold
similar to the Ott-Antonsen manifold and describes the
evolution of z2. However, these equations do not capture
the asymmetric part of the dynamics, and moreover they
depend on the asymmetric part via z2’s dependence on z1.
As we will see, this reflects the system’s dependence on
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asymmetry in oscillator arrangements between two
clusters.
To close the dynamics we apply a self-consistency

analysis to characterize the order parameter z1. We first
note that, by entering the rotating frame θ ↦ θ þ ω0t we
set ω0 ¼ 0 so that _ψ1 ¼ _ψ2 ¼ 0. Moreover, by rotating
initial conditions θð0Þ ↦ θð0Þ þ ψ1ð0Þ we set ψ1 ¼
ψ2 ¼ 0. Equation (2) then implies that oscillators that
become phase locked satisfy jωij ≤ Kr21, in which case
they relax to one of the two stable fixed points θi ¼ θ�ðωiÞ
or θ�ðωiÞ þ π, where θ�ðωÞ ¼ arcsinðω=Kr21Þ=2. These
two fixed points correspond to the two clusters that the
phase-locked oscillators organize into. Specifically, phase-
locked oscillators starting near θ ¼ 0 or π will end up at the
fixed points θ�ðωÞ or θ�ðωÞ þ π, respectively. The phase-
locked population is described by the density function

flockedðθ;ωÞ ¼ ηδ(θ − θ�ðωÞ)þ ð1 − ηÞδ(θ − θ�ðωÞ − π);

ð8Þ

where the asymmetry parameter η describes the fraction of
phase-locked oscillators in the θ ¼ 0 cluster. On the other
hand, oscillators satisfying jωij > Kr21 drift for all time and
relax to the stationary distribution

fdriftðθ;ωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − K2r41

p
2π½ωþ Kr21 sinð2ψ1 − 2θÞ� : ð9Þ

Next, the order parameter z1 is given by the integral
z1 ¼ ∬ fðθ;ω; tÞeiθdθdω, which after inserting the density
f as defined by Eqs. (8) and (9) reduces to

r1 ¼ ð2η − 1Þ
Z

Kr2
1

−Kr2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðω=Kr21Þ2

p
2

s
gðωÞdω; ð10Þ

where the contribution from the drifting oscillators van-
ishes due to the symmetry of fdrift. Returning to r2, Eq. (6)
implies that at steady state we have

r2 ¼
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2r41

p
Kr21

: ð11Þ

Thus, the macroscopic steady state is described by
Eqs. (10) and (11).
Interpreting these analytical results in the context of

numerical simulations allows us to understand the novel
phenomena that occur in the dynamics of Eq. (1).
Beginning with simulations of a system with N ¼ 105

oscillators whose natural frequencies are Lorentzian with
ω0 ¼ 0 and Δ ¼ 1, we consider initial conditions of
varying asymmetry, setting initial phases to θið0Þ ¼ 0
and π with probabilities η and 1 − η, respectively. We then
begin simulations at K ¼ 16 and after reaching steady state

slowly decrease K to zero, then restore it slowly to 16. In
Figs. 1(a) and 1(b) we plot the resulting values for the order
parameters r1 and r2, respectively, for η ¼ 1 (blue, top),
0.95 (red), 0.9 (green), 0.85 (orange), and 0.8 (purple,
bottom). Arrows indicate the direction of K and results
corresponding to decreasing and increasingK are plotted as
open and filled circles, respectively. As K is initially
decreased solutions traverse different partially synchron-
ized states that are determined by η, until each branch
undergoes a discontinuous jump to the incoherent state at
different critical coupling strengths in abrupt desynchro-
nization transitions. Importantly, this highlights both a rich
extensive multistability (here five different branches are
shown, but in the thermodynamic limit an infinite number
of such states exist) and a continuum of abrupt desynch-
ronization transitions at different coupling strengths.
Partially synchronized branches are characterized by the
asymmetry parameter η, indicating that these complex
dynamics arise from different allocations of phase-locked
oscillators in the two clusters at θ ¼ 0 and π. Next, as K is
restored to its initial value of 16 no spontaneous transitions
back to synchronization occur, indicating no abrupt syn-
chronization to complement the abrupt desynchronization
transitions. In Figs. 2(a) and 2(b) we show that our theory
captures these dynamics, plotting in solid curves the
theoretical predictions of r1 and r2, respectively, given
by Eqs. (10) and (11). We use the same values of η as in
Fig. 1 and overlay the results from simulations in open
circles, noting excellent agreement.
To better understand the nature of the abrupt desynch-

ronization and multistability phenomena, we investigate the
minimal partially synchronized states, i.e., minimal non-
zero values rmin

1 and rmin
2 allowable for different coupling

strengths. We first plot numerical results for rmin
1 and rmin

2 in
Figs. 2(a) and 2(b) using black circles. Interestingly, while
rmin
1 appears to decay monotonically with K, rmin

2 remains
roughly constant. In fact, the minimal branch rmin

2 is
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FIG. 1. Synchronization profiles. The order parameters (a) r1
and (b) r2 as a function of the coupling strength K for various
asymmetry values η. Blue, red, green, orange, and purple circles
represent results obtained from direct simulations of Eq. (2) with
N ¼ 105 oscillators for η ¼ 1, 0.95, 0.9, 0.85, and 0.8, respec-
tively.
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constant and can be leveraged to analytically describe the
branches rmin

1 ðKÞ and rmin
2 ðKÞ as well as the corresponding

asymmetry value ηminðKÞ and critical coupling strengths
KcðηÞ where the abrupt desynchronization occurs. We
proceed by inverting Eq. (11), obtaining Kr21 ¼ 2r2=
ð1 − r22Þ, which can be inserted into Eq. (10), yielding

ffiffiffiffiffiffiffiffiffiffiffiffi
2r2
1− r22

s
¼

ffiffiffiffi
K

p
ð2η− 1Þ

Z
2r2=ð1−r22Þ

−2r2=ð1−r22Þ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ½ωð1− r22Þ=2r2�2

p
2

s
gðωÞdω: ð12Þ

While Eq. (12) appears more complicated than Eq. (10), we
note that the coupling strength K has been entirely scaled
out of the integral, appearing outside with (2η − 1). We
therefore conclude that if the quantities

ffiffiffiffi
K

p
and 2η − 1

cancel one another out, i.e.,
ffiffiffiffi
K

p ð2η − 1Þ is constant, it
follows that the solution r2 in Eq. (12) is independent of K.
We therefore propose the ansatz

ffiffiffiffi
K

p ð2η − 1Þ ¼ const and
use the initial condition ηmin½Kcð1Þ� ¼ 1, where Kcð1Þ
denotes the very first coupling strength where a synchron-
ized state is possible with η ¼ 1, yielding

ηminðKÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Kcð1Þ

p
2

ffiffiffiffi
K

p þ 1

2
: ð13Þ

Equation (13) implies that along the minimum branch we
have that

ffiffiffiffi
K

p ð2η − 1Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
Kcð1Þ

p
≈ 2.034, which can be

used in Eq. (12) to compute the minimum branch of r2, and
in turn r1 via Eq. (11), yielding

rmin
1 ðKÞ ≈ 1.2120ffiffiffiffi

K
p and rmin

2 ðKÞ ≈ 0.5290: ð14Þ

In Figs. 2(a) and 2(b) we plot these minimum branches in
solid black curves, which agree with the simulation results.
Lastly, by inverting Eq. (13) we find the critical coupling
strength Kc as a function of η where the abrupt desynch-
ronization transition occurs, namely

KcðηÞ ≈
4.137

ð2η − 1Þ2 : ð15Þ

In Fig. 3(a) we plot the theoretical prediction of the abrupt
desynchronization point KcðηÞ as a solid curve vs obser-
vations from direct simulations as black circles, noting
excellent agreement.
The dynamics in the 2-simplex layer serves as a minimal

model for memory and information storage, capturing a
number of critical properties. Each distinct synchronized
state corresponds to a specific piece of information, differ-
entiated by the clustering arrangement of the oscillators.
Moreover, the system can quickly and easily transition to
the resting state described by incoherence via the abrupt
desynchronized transition. The microscopic properties of
this abrupt desynchronization transition are illustrated in
Fig. 3(b), where for η ¼ 0.9 the distribution fðθÞ of phases
is plotted asK is decreased slowly through the critical value
of Kc ≈ 6.47. Before the transition the distribution is
asymmetrically clustered about θ ¼ 0 and π and changes
slowly until at K ¼ Kc all information is lost as the
distribution becomes uniform, representing a resting
state.
Lastly, we shift our focus to the ϕ-layer dynamics, re-

writing Eq. (2) as _ϕi¼νiþκρ1sinðφ1−θiÞþdsinðθi−ϕ1Þ,
where ρ1eiφ1 ¼ ð1=NÞPN

j¼1 e
iϕj . The dynamics of each ϕi

can be written in terms of a single sine term; however, due

0 4 8 12 16
coupling, K

sy
nc

, r
2

0 4 8 12 16
coupling, K

0.2

0.4

0.6

0.8

1
sy

nc
, r

1
(a)

 = 1 = 1

(b)

r
2
min

r
1
min

 = 0.8

 = 0.8
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and (b) r2, the synchronization branches predicted by Eqs. (10)
and (11) are plotted as solid curves for asymmetries η ¼ 1, 0.95,
0.9, 0.85, and 0.8 as well as the minimum branches [predictions
for which are given in Eq. (15)]. Results obtained from direct
simulations with N ¼ 105 oscillators are plotted in blue, red,
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circles represent minimum branches.
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N ¼ 105 oscillators. (b) Illustration of the distribution fðθÞ of
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to the fact that all θis are generically different, the target
phase and amplitude are all distinct, making self-consis-
tency analyses difficult. However, the microscopic proper-
ties may still be understood by comparing κ and d. Namely,
for κ ≫ d the dynamics are effectively undriven, in which
case oscillators that become entrained form a single cluster.
On the other hand, for d ≫ κ the driving term dominates,
causing each ϕi to entrain with θi, thereby mirroring any
cluster behavior. This is illustrated in Fig. 4, where we plot
ρ1 as a function of d given κ ¼ 3 and K ¼ 12 for
asymmetries η ¼ 1, 0.95, 0.9, 0.85, and 0.8 in blue,
red, green, orange, and purple circles, respectively.
Dashed horizontal lines denote the r1 value for each η,
illustrating that ρ1 → r1 in the d ≫ κ regime and in fact the
1-simplex layer can also store information. However, as d
decreases into the d ≪ κ regime this property is lost as the
1-simplex dynamics no longer reflect the structure in the
2-simplex layer.
The analysis presented here demonstrates how the

extension from pairwise to more general simplicial (spe-
cifically, 2-simplex) interactions in coupled oscillator
systems can give rise to a host of complex nonlinear
phenomena including information and memory storage.
Moreover, these phenomena can be captured and described
using analytical methods. In particular, we have charac-
terized a continuum of abrupt desynchronization transitions
that occur at different coupling strengths without any
abrupt synchronization transitions. This continuum stems
from extensive multistability, whereby for sufficiently
strong coupling an infinite number of partially synchron-
ized states are stable. These different stable states represent
synchronized states organized via different asymmetries
into two clusters of entrained oscillators. In addition to
highlighting the possible complexity that may arise in
coupled oscillator systems with simplicial interactions, we

hypothesize that simplicial interactions may give rise to
novel nonlinear phenomena in other complex systems.
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