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We calculate the force between two spherical metal nanoparticles of charge Q1 and Q2 in a dilute 1∶1
electrolyte solution. Numerically solving the nonlinear Poisson-Boltzmann equation, we find that metal
nanoparticles with the same sign of charge can attract one another. This is fundamentally different from
what is found for like-charged, nonpolarizable, colloidal particles, the two-body interaction potential for
which is always repulsive inside a dilute 1∶1 electrolyte. Furthermore, the existence of like-charge
attraction between spherical metal nanoparticles is even more surprising in view of the result that such
attraction is impossible between parallel metal slabs, showing the fundamental importance of curvature. To
overcome a slow convergence of the numerical solution of the full nonlinear Poisson-Boltzmann equation,
we developed a modified Derjaguin approximation which allows us to accurately and rapidly calculate the
interaction potential between two metal nanoparticles or between a metal nanoparticle and a phospholipid
membrane.
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Metal nanoparticles suspended in an electrolyte solution
have attracted a lot of attention for various applications
[1–10]. Because of their strong affinity for biological
surfaces and compatibility with the immune system [11],
gold nanoparticles are being used for cancer treatment and
drug delivery [12–14]. They have also found applications
in catalysis [15,16] and optics [17,18]. Unfortunately, our
theoretical understanding of the interactions between metal
nanoparticles inside an electrolyte solution is rather limited.
Gold nanoparticles are often synthesized using citrate as a
stabilizing agent [19,20], resulting in a polydisperse sus-
pension of negatively charged nanoparticles at pH 7. When
such particles are in the vicinity of one another, in addition
to the direct Coulomb force between the two particles, there
is an additional interaction arising from the induced charge
on the metal cores. The induced charge is nonuniformly
distributed over the metal cores, but its net amount is zero
for each particle. As the two nanoparticles approach one
another, both the surface charge distribution and the
electrostatic potential on each particle change with the
distance of separation. Most theoretical works on colloidal
suspensions ignore the effects of polarizability and treat the
particle surface charge distribution as fixed and uniform
[21]. There are, however, some recent works which explore
the effects of charge regulation [22] and patchiness [22–26]
on the interaction between planar surfaces; the physics
behind such systems, however, is quite different from the
polarizability effects that we will be interested to explore in
the present Letter. Recent computational methods try to
mimic the behavior of metallic materials using parame-
trized Lennard-Jones particles [9,27]. With the exception of
metal planar surfaces [6,28], the direct implementation of

proper electrostatic boundary conditions in simulations using
Green function methods is very complicated, requiring the
use of computationally very demanding boundary element
methods in order to account for polarization effects [29,30].
It is well known that like-charged colloidal particles can

attract one another if the suspension contains multivalent
counterions [21,31–42]. This attraction results from the
electrostatic correlations between the double layers of
condensedmultivalent counterions [21]. On the other hand,
it is also believed that no such attraction is possible in
electrolyte solutions with only a 1∶1 electrolyte [43,44] for
which correlation effects are negligible and the mean-field
Poisson-Boltzmann (PB) equation is almost exact [21]. The
absence of like-charge attraction for nonpolarizable colloi-
dal particles has been confirmed using explicit Monte Carlo
simulations [45]. Furthermore, it can be shown explicitly
that like-charged parallel metal slabs inside a dilute 1∶1
electrolyte always repel one another. Contrary to all of the
above, in this Letter, we will show that two spherical like-
charged metal nanoparticles can attract one another in a
dilute 1∶1 electrolyte solution. The surprising attraction is a
consequence of the polarization of the metal cores and is
similar to the attraction between charged conducting
spheres in a vacuum [46,47]. The polarization-induced
like-charge attraction should be very important for the
interaction between charged gold particles and phospho-
lipid membranes—a situation of great practical importance
in medical applications [48,49].
We start by considering the interaction between two

parallel infinite metal slabs of width d and total surface
charge densities 2σ1 and 2σ2, separated by a surface-to-
surface distance L, as shown in Fig. 1(a). Both faces of the
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metal slabs are charged. The charge on each face will adjust
itself so as to minimize the total free energy of the system.
When L → ∞, both faces of slab 1 will have the same
surface charge density σ1 and of slab 2, σ2.
For dilute 1∶1 electrolyte solutions, electrostatic corre-

lations between the ions are negligible, and the mean-field
PB equation is quasiexact. To calculate the force between
two metal slabs separated by the surface-to-surface distance
L, we must solve the nonlinear PB equation

ϵ∇2ϕ ¼ 8πqρS sinh ½−βqϕ�; ð1Þ

where ϕ is the electrostatic potential, q is the elementary
charge, ϵ is the dielectric constant of water, and β ¼ 1=kBT.
The Bjerrum length is defined as λB ¼ βq2=ϵ ¼ 7.2 Å, the
value for water at room temperature. Inside the metal, the
electric field must vanish, so that each slab is an equi-
potential volume. This means that the contact density of
ions on both faces of a slab is identical and the kinetic
contribution to the disjoining pressure P must vanish. The
pressure is then determined only by the electric stress

βPðLÞ ¼ βϵEoutðLÞ2=8π − βϵEinðLÞ2=8π; ð2Þ

where Ein and Eout are the electric fields at the interior and
exterior surfaces, respectively, of a slab. By the super-
position, for two like-charged metal slabs jEoutj > jEinj, so
that the pressure will always be repulsive. This is demon-
strated in Fig. 2, where we have numerically solved the PB
equation using fourth-order Runge-Kutta and explicitly
calculated the pressure between various like-charged metal
slabs.
We next consider two metal nanoparticles depicted in

Fig. 1(b) inside a1∶1 electrolyte solutionof concentrationρS.
Both particles have radius a and charge Q1 and Q2,
respectively. The surface-to-surface separation is again L.
To solve Eq. (1), we now use a relaxation method in the
cylindrical coordinate system and define the following
boundary conditions: ϕð∞;zÞ¼ϕðr;�∞Þ¼ϕ0ð0;zÞ¼ 0,
ϕjS1 ¼ ϕ1, and ϕjS2 ¼ ϕ2, where ϕ1 and ϕ2 are a priori
unknown electrostatic potentials inside nanoparticles 1 and
2, respectively. Starting from an initial guess for the values of
ϕ1 and ϕ2, our algorithm performs a search for the potentials
ϕ1 and ϕ2 until the charge on each nanoparticle—calculated
using the Gauss law, Q ¼ −ðϵ=4πÞ HS0 E · dS0, where
E ¼ −∇ϕðr; zÞ is the electric field and S0 is the nanoparticle
surface—agrees with the initially specified value of Q1 and
Q2. The electrostatic-entropic force per unit volume is
f ¼ ∇ ·Π, where Π is the entropic-electromagnetic stress
tensor

Πij ¼ −pðr; zÞδij þ
ϵ

4π

�
Eiðr; zÞEjðr; zÞ −

1

2
E2ðr; zÞδij

�
:

ð3Þ
The kinetic pressure ispðr;zÞ¼kBTρSðe−βqϕðr;zÞþeβqϕðr;zÞÞ,
andEðr; zÞ andEiðr; zÞ are themodulus and the components
of the electric field, respectively. The force can be expressed
in terms of an integral of the stress tensor over an arbitrary
surface enclosing one of the particles: F ¼ H

ẑ ·Π · n̂dA.
Choosing the boundary surface to be a cylinder of radius a
and length 2a, we obtain

(a)

(b)

FIG. 1. (a) Two infinite metal slabs of width d and total charge
density 2σ1 and 2σ2, respectively. σa;b;c;d represent the surface
charge densities on the faces of the two slabs. The values of
σa;b;c;d change depending on the separation between the slabs,
while the total charge density on each slab remains fixed. (b) Two
like-charged spherical metal nanoparticles of charge Q1 and Q2

and radius a, separated by a surface-to-surface distance L, in an
electrolyte solution of concentration ρS.

FIG. 2. The pressure between different like-charged metal slabs
of width d ¼ 10 Å and the charge indicated in the figure,
separated by a distance L. The pressure is always repulsive,
independent of the charge on each slab. The salt concentration
is 100 mM.

PHYSICAL REVIEW LETTERS 122, 248005 (2019)

248005-2



βF ¼ 2π

Z
a

0

drr

�
ρSe−βqϕðr;L=2Þ þ ρSeβqϕðr;L=2Þ

−ρSe−βqϕðr;L=2þ2aÞ − ρSeβqϕðr;L=2þ2aÞ

þ βϵ

8π
½E2

rðr; L=2Þ − E2
zðr; L=2Þ

þE2
zðr; L=2þ 2aÞ − E2

rðr; L=2þ 2aÞ�
�

þ 2πa
Z

L=2þ2a

L=2
dz

βϵ

4π
Erða; zÞEzða; zÞ; ð4Þ

where the positive sign of the force signifies repulsion
between the nanoparticles. The results of the numerical
integration are shownas symbols inFig. 3(a).We find that the
interaction between two like-charged spherical metal nano-
particles inside a 1∶1 electrolyte solution can be either
attractive or repulsive, depending on their relative charge and
electrolyte concentration. This is quite surprising in view of
our previous result showing that like-charge attraction is
impossible between parallel metal slabs. The curvature of
nanoparticles, therefore, plays a fundamental role for the
existence of like-charge attraction.
Unfortunately, the relaxation method that we developed

to calculate the interaction force between two metal nano-
particles is quite expensive of CPU time. To obtain accurate
results requires a very fine mesh, which makes the con-
vergence very slow, in particular, for large particles and low

salt concentrations. Furthermore, if one of the charged
objects is nonmetal, such as, say, a phospholipid mem-
brane, significant modifications to the algorithm must
be made, since in this case the surface of such an object
will no longer be equipotential. In order to overcome these
difficulties, we have developed a modified Derjaguin
approximation, which allows us to efficiently calculate
the interaction potential between two metal nanoparticles or
between a nanoparticle and a charged planar surface.
The Derjaguin approximation allows one to calculate the

interaction force between spherical particles, if the corre-
sponding expressions are known for the interaction
between planar objects. Consider two infinite metal slabs
of width d and total surface charge densities 2σ1 and 2σ2,
separated by a surface-to-surface distance L, as depicted in
Fig. 1(a). Both faces of each metal slab are charged, with
the surface charge on each face depending on the separation
between the slabs, while the total surface charge on each
slab is fixed. The values of σ1;2 are not precisely the surface
charge densities on the corresponding spherical nanopar-
ticles. The nanoparticle surface charge density must be
renormalized in order to account for the curvature effects.
This is done by demanding that, for large L → ∞, the
electrostatic potential of a metal slab should be the same as
for the corresponding nanoparticle. This renormalized
surface charge will then produce the same electric field
in the vicinity of a slab as exists near a spherical nano-
particle. The surface potential ϕsp of an isolated spherical
particle with a surface charge density σsp can be easily
calculated by numerically solving the PB equation in
spherical coordinates. Once this is known, the correspond-
ing surface charge density on each face of an isolated slab
σsl can be calculated using the analytical solution of PB
equation for a charged plane [50]:

σsl ¼
ffiffiffiffiffiffiffiffiffi
2ρSϵ

πβ

s
sinh

�
βqϕsp

2

�
: ð5Þ

This provides a mapping between the surface charge
densities of spherical nanoparticles and of metal slabs,
σ1;2, used in the Derjaguin construction.
In the spirit of the Derjaguin approximation, we now

discretize the spherical surfaces of each nanoparticle into
parallel planar slabs. If the disjoining pressure PðlÞ
between the slabs separated by a surface-to-surface dis-
tance l is known, the total force between spherical nano-
particles can be calculated as [50]

βF ¼ πa
Z

∞

L
PðlÞdl: ð6Þ

The expression for PðlÞ is the same as in Eq. (2). The
validity of the Derjaguin approximation is restricted to
L=a ≪ 1 and κa ≫ 1, where κ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8πλBρS
p

is the inverse
Debye length [51]. For metal nanoparticles, there is an

(a) (b)

FIG. 3. (a) Electrostatic-entropic force between two like-
charged metal nanoparticles of radius a ¼ 50 Å and chargeQ1 ¼
−67q and Q2 ¼ −67q, −31q, and −6q—orange, violet, and
green curves, respectively—in the electrolyte at 40 mM. Positive
force is repulsive, and negative is attractive. The squares are
forces calculated numerically using the PB equation in cylindrical
coordinates and Eq. (4), and the lines are calculated using the
modified Derjaguin approximation, Eq. (6). (b) Electrostatic-
entropic force—calculated using the modified Derjaguin approxi-
mation, Eq. (6)—between two like-charged metallic nanoparticles
of radius a ¼ 200 Å and charges Q1 ¼ −4775q and various
values of Q2. Salt concentrations are as indicated in the figure.
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additional complication, since the slabs belonging to the
same nanoparticle must be equipotential. However, we do
not know a priori what this potential is, since it depends on
the separation between the nanoparticles. However, we do
know that the total charge on each nanoparticle is fixed,
independent of separation, which means that the total
charge on the slabs that compose a nanoparticle must
also be conserved. This results in two constraints which
determine the electrostatic potentials of metal slabs when
the nanoparticles are at surface-to-surface separation L:Z

Lþ2a

L
½σaðlÞ þ σbðlÞ − 2σ1�dl ¼ 0;Z

Lþ2a

L
½σcðlÞ þ σdðlÞ − 2σ2�dl ¼ 0: ð7Þ

Note that each slab of our modified Derjaguin approxima-
tion has a different surface charge, while all the slabs
corresponding to the same nanoparticle have the same
electrostatic potential, which changes with L. To calculate
the disjoining pressure, we first guess the value of the
electrostatic potential on each slab, ϕguess

1 and ϕguess
2 . Since

the electric field inside the metal slabs is zero, the surface
charge on the two external faces [see Fig. 1(a)] can be
calculated analytically from the exact solution of the PB
equation [50]:

σa;d ¼
ffiffiffiffiffiffiffiffiffi
2ρSϵ

πβ

s
sinh

�
βqϕguess

1;2

2

�
: ð8Þ

To calculate the charge on the interior faces, we numeri-
cally integrate the one-dimensional PB equation using
fourth-order Runge-Kutta. The surface charges σb;c can
then be obtained using the electric field and the Gauss law.
The values of ϕguess

1 and ϕguess
2 are then adjusted until the

constraints given by Eq. (7) are satisfied. In practice, this is
done using the Newton-Raphson or some alternative root-
finding algorithm.
In Fig. 3(a), the forces calculated using Eqs. (4) and (6)

are compared. The agreement is very good, showing that
the modified Derjaguin approach provides an excellent
approximation for calculating the force between metal
nanoparticles, with a significant gain in CPU time. It is
now possible to explore the parameter space to see the
precise conditions which lead to like-charge attraction
[Fig. 3(b)]. The attraction is a consequence of the nonuni-
form surface charge induced on the metal cores of the
nanoparticles. However, since the total force contains both
electrostatic and entropic contributions, there is no simple
criterion that one can use to determine the specific con-
ditions for which like-charge attraction will manifest itself.
In Fig. 3(b), we use the modified Derjaguin approximation
to calculate the force between large nanoparticles of radii
a ¼ 200 Å, in a dilute electrolyte solution—conditions for

which a direct integration of the nonlinear PB equation is
very time consuming. Once again, for sufficiently different
values of Q1 and Q2, like-charge attraction manifests itself.
Furthermore, we observe that, for low salt concentrations,
attraction can extend to very large distances.
The modified Derjaguin approach introduced in this

Letter can also be used to study adsorption of metal
nanoparticles with charge Q to a charged phospholipid
membrane with surface charge density σ; see Fig. 4. Within
the Derjaguin approximation, the electric field just outside
the membrane is directly determined by the Gauss law,
Eð0Þ ¼ 4πσ=ϵ, which allows us to easily integrate the 1d
PB equation using fourth-order Runge-Kutta. The potential
on the metal slabs is once again determined using the
charge conservation condition:

Z
Lþ2a

L
½σaðlÞ þ σb − 2σn�dl ¼ 0; ð9Þ

where 2σn is the renormalized total surface charge on the
metal slab, calculated using Eq. (5). The electrostatic-
entropic force between the membrane and the nanoparticle
can be calculated using Eq. (6), replacing the prefactor πa
by 2πa, valid for the interaction of a sphere with a planar
surface [50]. The interaction potential can be obtained
by integrating the force as a function of separation. To
quantitatively study the adsorption of metal nanoparticles
to the membrane, one must also take into account the
dispersion interaction [52]

Uv ¼−
A
12

�
2a
L
þ 1

ð1þL=2aÞþ2 log

�
L=2a

1þL=2a

��
; ð10Þ

where A ≈ 8.9kBT is the Hamaker constant characteristic of
decane-gold interaction in water at room temperature [53].
We now explore the interaction between gold nano-

particles of radius a ¼ 200 Å and negative charge Q, with
a like-charged phospholipid membrane of surface charge
density σ ¼ −0.26 C=m2, in a dilute electrolyte solution of
2 mM. We see that strongly charged nanoparticles are

(a) (b)

FIG. 4. (a) A metal nanoparticle of charge Q and radius a, at
surface-to-surface distance L from a charged planar membrane,
inside an electrolyte solution. (b) Representation of the modified
Derjaguin approximation for this system.
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repelled from the surface. However, when the modulus of
Q is not too large, the interaction becomes attractive at
sufficiently short separations; see Fig. 5. As the modulus of
the charge decreases, the range of like-charge attraction
increases. Figure 5 also shows that, for these low salt
concentrations, the total particle-membrane interaction
potential is dominated by the electrostatic-entropic con-
tribution, with the dispersion potential being negligible. If
the salt concentration is increased, the electrostatic con-
tribution will become screened, and the total potential will
be dominated by the dispersion interaction. Knowledge of
the interaction potential between the metal nanoparticles
and a phospholipid membrane allows us to easily calculate
the adsorption isotherms. This will be explored in future
work.
In this Letter, we have explored like-charge attraction

between spherical metal nanoparticles inside a monovalent
electrolyte solution. The existence of such attraction is
particularly surprising considering that two like-charged
parallel metal slabs always repel one another, demonstrat-
ing the importance of curvature for this counterintuitive
result. We have used two methods to explore the interaction
between nanoparticles—a direct numerical integration of
the full nonlinear PB equation in cylindrical coordinates and
a newly introduced modified Derjaguin approximation.
Both approaches provide identical results, but the modified
Derjaguin approximation leads to an orders of magnitude
gain in CPU time. We have also used the modified
Derjaguin approximation to study the adsorption of charged
metal nanoparticles to biological membranes. The new
theory provides an efficient way to calculate the adsorption
isotherms important in various medical applications. It can
also be used to study the stability of dispersions and to
explore heterogeneous coagulation of suspensions of metal
nanoparticles.

Y. L. acknowledges very useful conversations with
Renato Pakter about numerical methods. This work was
partially supported by the CNPq, INCT-FCx, and by the
U.S. Air Force Office of Scientific Research under Grant
No. FA9550-16-1-0280.

*alexandre.pereira@ufrgs.br
†levin@if.ufrgs.br

[1] P. R. Selvakannan, S. Mandal, S. Phadtare, R. Pasricha, and
M. Sastry, Langmuir 19, 3545 (2003).

[2] M. Daniel and D. Astruc, Chem. Rev. 104, 293 (2004).
[3] S. Aryal, B. K. Remant, N. Bhattarai, C. K. Kim, and H. Y.

Kim, J. Colloid Interface Sci. 299, 191 (2006).
[4] P. S. Ghosh, C. Kim, G. Han, N. S. Forbes, and V. M.

Rotello, ACS Nano 2, 2213 (2008).
[5] D. A. Walker, B. Kowalczyk, M. O. de la Cruz, and B. A.

Grzybowski, Nanoscale 3, 1316 (2011).
[6] M. Girotto, A. P. dos Santos, and Y. Levin, J. Chem. Phys.

147, 074109 (2017).
[7] D. S. Ether, F. S. S. Rosa, D. M. Tibaduiza, L. B. Pires, R. S.

Decca, and P. A. Maia Neto, Phys. Rev. E 97, 022611
(2018).

[8] B. Petersen, R. Roa, J. Dzubiella, and M. Kanduč, Soft
Matter 14, 4053 (2018).

[9] I. L. Geada, H. Ramezani-Dakhel, T. Jamil, M. Sulpizi, and
H. Heinz, Nat. Commun. 9, 716 (2018).

[10] M. Girotto, R. M. Malossi, A. P. dos Santos, and Y. Levin,
J. Chem. Phys. 148, 193829 (2018).

[11] E. Connor, J. Mwamuka, A. Gole, C. Murphy, and M.
Wyatt, Small 1, 325 (2005).

[12] N. L. Rosi, D. A. Giljohann, C. S. Thaxton, A. K. R. Lytton-
Jean, M. S. Han, and C. A. Mirkin, Science 312, 1027
(2006).

[13] L. A. Dykman and N. G. Khlebtsov, Acta Nat. 3, 34 (2011).
[14] D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D.

Massich, P. C. Patel, and C. A. Mirkin, Angew. Chem.,
Int. Ed. 49, 3280 (2010).

[15] N. Lopez, T. V.W. Janssens, B. S. Clausen, Y. Xu, M.
Mavrikakis, T. Bligaard, and J. K. Norskov, J. Catal. 223,
232 (2004).

[16] D. T. Thompson, Nano Today 2, 40 (2007).
[17] L. Wang, J. Bai, P. Huang, H. Wang, L. Zhang, and Y. Zhao,

Electrochem. Comm. 8, 1035 (2006).
[18] S. R. Ahmed, J. Kim, V. Tran, T. Suzuki, S. Neethirajan, J.

Lee, and E. Y. Park, Sci. Rep. 7, 44495 (2017).
[19] A. Mocanu, I. Cernica, G. Tomoaia, L. Bobos, O. Horovitz,

and M. Tomoaia-Cotisel, Colloid Surf. A 338, 93 (2009).
[20] M. Doyen, K. Bartik, and G. Bruylants, J. Colloid Interface

Sci. 399, 1 (2013).
[21] Y. Levin, Rep. Prog. Phys. 65, 1577 (2002).
[22] A. Majee, M. Bier, and R. Podgornik, Soft Matter 14, 985

(2018).
[23] G. Silbert, D. Ben-Yaakov, Y. Dror, S. Perkin, N. Kampf,

and J. Klein, Phys. Rev. Lett. 109, 168305 (2012).
[24] D. Ben-Yaakov, D. Andelman, and H. Diamant, Phys. Rev.

E 87, 022402 (2013).
[25] A. Bakhshandeh, A. P. dos Santos, A. Diehl, and Y. Levin, J.

Chem. Phys. 142, 194707 (2015).

FIG. 5. Interaction potentials between a spherical metal nano-
particle of radius a ¼ 200 Å and charge Q, indicated in the
figure, and a membrane of charge density σ ¼ −0.26 C=m2. The
electrolyte concentration is 2 mM. Solid curves are the electro-
static-entropic potentials for different nanoparticle charges, while
the dashed curves are the total interaction potentials, which also
include the van der Waals dispersion interaction. The membrane
was modeled as a decane, with Hamaker constant A ≈ 8.9kBT.

PHYSICAL REVIEW LETTERS 122, 248005 (2019)

248005-5

https://doi.org/10.1021/la026906v
https://doi.org/10.1021/cr030698%2B
https://doi.org/10.1016/j.jcis.2006.01.045
https://doi.org/10.1021/nn800507t
https://doi.org/10.1039/C0NR00698J
https://doi.org/10.1063/1.4989388
https://doi.org/10.1063/1.4989388
https://doi.org/10.1103/PhysRevE.97.022611
https://doi.org/10.1103/PhysRevE.97.022611
https://doi.org/10.1039/C8SM00399H
https://doi.org/10.1039/C8SM00399H
https://doi.org/10.1038/s41467-018-03137-8
https://doi.org/10.1063/1.5013337
https://doi.org/10.1002/smll.200400093
https://doi.org/10.1126/science.1125559
https://doi.org/10.1126/science.1125559
https://doi.org/10.1002/anie.200904359
https://doi.org/10.1002/anie.200904359
https://doi.org/10.1016/j.jcat.2004.01.001
https://doi.org/10.1016/j.jcat.2004.01.001
https://doi.org/10.1016/S1748-0132(07)70116-0
https://doi.org/10.1016/j.elecom.2006.04.012
https://doi.org/10.1038/srep44495
https://doi.org/10.1016/j.colsurfa.2008.12.041
https://doi.org/10.1016/j.jcis.2013.02.040
https://doi.org/10.1016/j.jcis.2013.02.040
https://doi.org/10.1088/0034-4885/65/11/201
https://doi.org/10.1039/C7SM02270K
https://doi.org/10.1039/C7SM02270K
https://doi.org/10.1103/PhysRevLett.109.168305
https://doi.org/10.1103/PhysRevE.87.022402
https://doi.org/10.1103/PhysRevE.87.022402
https://doi.org/10.1063/1.4921410
https://doi.org/10.1063/1.4921410


[26] R. M. Adar, D. Andelman, and H. Diamant, Adv. Colloid
Interface Sci. 247, 198 (2017).

[27] H. Heinz, T. Lin, R. K. Mishra, and F. S. Emami, Langmuir
29, 1754 (2013).

[28] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley,
New York, 1999).

[29] S. Tyagi, M. Süzen, M. Sega, M. Barbosa, S. Kantarovitch,
and C. Holm, J. Chem. Phys. 132, 154112 (2010).

[30] Z. Gan, H. Wu, K. Barros, Z. Xu, and E. Luijten, J. Comput.
Phys. 291, 317 (2015).

[31] G. N. Patey, J. Chem. Phys. 72, 5763 (1980).
[32] L. Guldbrand, B. J. H. Wennerstrom, and P. Linse, J. Chem.

Phys. 80, 2221 (1984).
[33] E. Allahyarov, I. D’Amico, and H. Löwen, Phys. Rev. Lett.

81, 1334 (1998).
[34] P. Linse and V. Lobaskin, Phys. Rev. Lett. 83, 4208 (1999).
[35] F. J. Solis and M. O. de la Cruz, Phys. Today 54, No. 1, 71

(2001).
[36] A. G. Moreira and R. R. Netz, Phys. Rev. Lett. 87, 078301

(2001).
[37] J. C. Butler, T. Angelini, J. X. Tang, and G. C. L. Wong,

Phys. Rev. Lett. 91, 028301 (2003).
[38] A. Naji and R. R. Netz, Eur. Phys. J. E 13, 43 (2004).
[39] M. Kanduč, J. Dobnikar, and R. Podgornik, Soft Matter 5,

868 (2009).
[40] L. Sămaj and E. Trizac, Phys. Rev. Lett. 106, 078301 (2011).

[41] D. Dean, J. Dobnikar, A. Naji, and R. Podgornik, Electro-
statics of Soft and Disordered Matter, 1st ed. (Pan Stanford,
Singapore, 2014).

[42] A. P. dos Santos and R. R. Netz, J. Chem. Phys. 148, 164103
(2018).

[43] J. C. Neu, Phys. Rev. Lett. 82, 1072 (1999).
[44] E. Trizac and J. L. Raimbault, Phys. Rev. E 60, 6530 (1999).
[45] T. E. Colla, A. P. dos Santos, and Y. Levin, J. Chem. Phys.

136, 194103 (2012).
[46] J. Lekner, Proc. R. Soc. A 468, 2829 (2012).
[47] J. Lekner, Am. J. Phys. 84, 474 (2016).
[48] U. Taylor, A. Barchanski, S. Petersen, W. A. Kues, U.

Baulain, L. Gamrad, L. Sajti, S. Barcikowski, and D. Rath,
Nanotoxicology 8, 118 (2014).

[49] L. Simon, K. Murphy, K. I. Aston, B. R. Emery, J. M.
Hotaling, and D. T. Carrell, J Assist Reprod Genet 33,
679 (2016).

[50] W. B. Russel, D. A. Saville, andW. R. Schowalter, Colloidal
Dispersions, 2nd ed. (Cambridge University Press,
Cambridge, England, 1989).

[51] B. K. C. Chan and D. Y. C. Chan, J. Colloid Interface Sci.
92, 281 (1983).

[52] H. C. Hamaker, Physica (Utrecht) 4, 1058 (1937).
[53] J. Mewis and N. J. Wagner, Colloidal Suspension Rheology,

1st ed. (Cambridge University Press, Cambridge, England,
2012).

PHYSICAL REVIEW LETTERS 122, 248005 (2019)

248005-6

https://doi.org/10.1016/j.cis.2017.04.002
https://doi.org/10.1016/j.cis.2017.04.002
https://doi.org/10.1021/la3038846
https://doi.org/10.1021/la3038846
https://doi.org/10.1063/1.3376011
https://doi.org/10.1016/j.jcp.2015.03.019
https://doi.org/10.1016/j.jcp.2015.03.019
https://doi.org/10.1063/1.438997
https://doi.org/10.1063/1.446912
https://doi.org/10.1063/1.446912
https://doi.org/10.1103/PhysRevLett.81.1334
https://doi.org/10.1103/PhysRevLett.81.1334
https://doi.org/10.1103/PhysRevLett.83.4208
https://doi.org/10.1063/1.1349627
https://doi.org/10.1063/1.1349627
https://doi.org/10.1103/PhysRevLett.87.078301
https://doi.org/10.1103/PhysRevLett.87.078301
https://doi.org/10.1103/PhysRevLett.91.028301
https://doi.org/10.1140/epje/e2004-00039-x
https://doi.org/10.1039/B811795K
https://doi.org/10.1039/B811795K
https://doi.org/10.1103/PhysRevLett.106.078301
https://doi.org/10.1063/1.5022226
https://doi.org/10.1063/1.5022226
https://doi.org/10.1103/PhysRevLett.82.1072
https://doi.org/10.1103/PhysRevE.60.6530
https://doi.org/10.1063/1.4718367
https://doi.org/10.1063/1.4718367
https://doi.org/10.1098/rspa.2012.0133
https://doi.org/10.1119/1.4942449
https://doi.org/10.3109/17435390.2013.859321
https://doi.org/10.1007/s10815-016-0700-x
https://doi.org/10.1007/s10815-016-0700-x
https://doi.org/10.1016/0021-9797(83)90143-1
https://doi.org/10.1016/0021-9797(83)90143-1
https://doi.org/10.1016/S0031-8914(37)80203-7

