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We propose an electric circuit array with topologically protected unidirectional voltage modes at its
boundary. Instead of external bias fields or Floquet engineering, we employ negative impedance converters
with current inversion (INICs) to accomplish a nonreciprocal, time-reversal symmetry-broken electronic
network we call a topolectrical Chern circuit (TCC). The TCC features an admittance bulk gap fully tunable
via the resistors used in the INICs, along with a chiral voltage boundary mode reminiscent of the Berry flux
monopole present in the admittance band structure. The active circuit elements in the TCC can be calibrated
to compensate for dissipative loss.
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Introduction.—The Chern Insulator (CI) is a cornerstone
of topological band theory. It is understood as the lattice
version of a quantum Hall system with topologically
protected edge modes, which are located in the spectral
gap characterizing the bulk insulating state. Conceived by
Haldane as a tight-binding model of electrons with broken
time-reversal symmetry on a hexagonal lattice [1], it is
rooted in the Berry phase experienced by the electrons
within the Brillouin zone viewed as a compact parameter
space [2,3]. The lattice Chern numberC is quantized to take
integer values, as it counts the total charge of Berry flux
monopoles. For a CI with open boundaries, this implies C
chiral edge modes which are topologically protected
against disorder and other imperfections, due to the absence
of backscattering. This induces a stronger protection than,
for instance, topological insulators, where only elastic
backscattering is prohibited by the time-reversal sym-
metry-protected topological character.
As the Berry phase is a phenomenon of parameter space

and does not rely on any property of the phase space of
quantum electrons, the CI suggests itself for a plethora of
alternative realizations. Haldane and Raghu employed this
insight to propose a CI in photonic crystals by use of the
Faraday effect, where chiral edge modes would manifest as
one-way waveguides [4]. This work inspired the formu-
lation and realization of Chern bands in magneto-optical
photonic crystals [5,6], optical waveguides subject to a
magnetic field [7] or Floquet modulation [8], ultracold
atomic gases [9], mechanical gyrotropic [10–12] and
acoustic [13,14] systems, as well as, most recently, coupled
optical resonators [15] and exciton polariton metamaterials
[16]. The nature and potential technological use of topo-
logical chiral edge modes crucially depends on the con-
stituent degrees of freedom, the magnitude of the bulk gap,

and the ability to prevent loss from affecting the edge
dynamics. In all before-mentioned physical systems, the
latter is the most challenging aspect, since the edge signal
can exhibit significant decay despite its topological
protection.
In this Letter, we propose a Chern circuit which is formed

by the admittance band structure of an electric network. As
initially accomplished for a doubled Hofstadter model
[17,18], topolectrical circuits [19,20] have been found to
host topological admittance band structures [21] of high
complexity, including Weyl bands [19,22,23] as well as
higher-order topological insulators [24–26]. Moving beyond
the realm of RLC circuits, the combined time-reversal
symmetry and circuit reciprocity breaking through negative
impedance converters with current inversion (INICs) [27]
allows us to formulate a topolectrical Chern circuit (TCC)
without external bias fields or Floquet engineering. We find
topologically protected chiral voltage edge modes which,
from the viewpoint of electrical engineering, bear resem-
blance to a voltage circulator. In contrast to previous Chern
band realizations, our arrangement of active circuit elements
allows for a recalibration of gain and loss to protect the chiral
voltage signal from decay.
Topolectrical Chern circuit.—The TCC is formed by a

periodic circuit structure sketched in Fig. 1(a). The circuit
unit cell detailed in Fig. 1(b) consists of two nodes, each of
which is connected to three adjacent nodes through a
capacitor C0 and to six next-nearest neighbors through
INICs [28], as specified in Fig. 1(c). The nodes are
grounded by inductors L0 as well as capacitors of capaci-
tance Cg � Δ on alternating sublattices A and B. In light of
the graph nature of electric circuits implying a gauge degree
of freedom for arranging the circuit components in real
space [21], we fix the Bravais vectors as a1 ¼ ð1; 0Þ and
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a2 ¼ ð0; 1Þ, amounting to a brick wall structure shown in
Fig. 1(a). The brick wall configuration is equivalent to any
other arrangement of voltage nodes in real space as long as
the connectivity is preserved, and the chosen gauge does
not impact any observable quantity [21]. The grounded
circuit Laplacian J is defined as the matrix relating the

vector of voltages V measured with respect to ground to the
vector of input currents I at the N circuit nodes by I ¼ JV
[19]. For an ac frequency ω ¼ 2πf and two-dimensional
reciprocal space implied by the brick wall gauge, the TCC
Laplacian JTCCðk;ωÞ and its spectrum of eigenvalues
jTCCðk;ωÞ reads

JTCCðk;ωÞ ¼ iω

��
3C0 þ Cg −

1

ω2L0

�
1 − C0½1þ cosðkxÞ þ cosðkyÞ�σx − C0½sinðkxÞ þ sinðkyÞ�σy

þ
�
Δþ 2

ωR0

½sinðkxÞ − sinðkyÞ − sinðkx − kyÞ�
�
σz

�
; ð1Þ
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�
�
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where ΓðkÞ ¼ ð2=R0Þ½sinðkxÞ − sinðkyÞ − sinðkx − kyÞ�. In
Fig. 2(a), we show the projected band structure jTCC;xðkyÞ
employing open-boundary conditions in the x direction, as
specified in Fig. 1(a). It features chiral admittance modes
residing in the admittance gap, reminiscent of the chiral
energy modes of a CI. Spectral reflection symmetry of
jTCC;xðkyÞ around zero admittance [Fig. 2(a)] is accom-
plished for the frequency ω0 ¼ 2πf0 ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3C0L0

p
.

Chiral edge modes.—The capacitive grounding param-
eterΔ appears in (1) as an inversion symmetry-breaking term
reminiscent of a Semenoff mass [30]. The topological

character of the model roots in the INIC next-nearest
neighbor A-A and B-B coupling elements. They break both
time-reversal symmetry and circuit reciprocity via the effec-
tive implementation of a negative and positive resistance in
the forward and reversed direction of the element, respec-
tively [28]. INICs with clockwise orientation [Fig. 1(b)]
effectively act as a voltage circulator, where a voltage profile
can travel only in one direction [28]. This implements a
circular motion of voltage in the bulk of the TCC. The INIC
couplings on different sublattices are oriented such that
they break chiral symmetry and introduce a Haldane mass

(c)(b)(a)

FIG. 1. Topolectrical Chern circuit. (a) The three-coordinated circuit graph in a brick wall representation of horizontal (x) and
vertical (y) alignment of nodes, where the circuit unit cell is given by two “sublattice” nodes A and B, the Bravais vectors by a1 and a2,
and the x terminations by the vertical green dashed lines. (b) The circuit element structure is detailed for the green dashed framed
rectangle in (a). Aside from capacitive internode connections (C0), there are inductive (L0) and capacitive (Cg � Δ) connections to
ground. Further A-A and B-B circuit elements are two oppositely circular sets of INICs (blue and red) labeled by their resistive parameter
R0. (c) The INIC element structure is shown for the green dashed framed rectangle in (b). The arrangement of resistors Ra and R0

combined with an operational amplifier with supply voltages Vþ and V− acts as a negative impedance converter with current inversion,
i.e., as a positive (negative) resistor from the front (back) end [28].
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ΓðkÞ=ω. By formal comparison to the Haldane model, (1)
amounts to inducingan effectivemagnetic fluxofϕ ¼ ðπ=2Þ
[1]. It is possible to control this fictitious magnetic flux by a
modification of the impedance phase of the circuit elements
in the INIC [Fig. 1(c)]. The Haldane mass induces a gapped
bulk admittance spectrum with chiral edge modes in the
admittance gap [Fig. 2(a)].
Symmetries.—The incorporation of resistances in a

circuit environment, such as in the TCC, breaks time-
reversal symmetry (TRS) [28]. This is because any resistive
component experiences Joule heating, leading to increased
entropy and, thus, broken time-reversal symmetry. TRS
translates into J ¼ −J� in real space and JðkÞ ¼ −J�ð−kÞ
in reciprocal space [28]. We define circuit reciprocity as
given by J⊤ ¼ J in real space and by JðkÞ ¼ J⊤ð−kÞ in
reciprocal space [28]. Using operational amplifiers [31] as
active circuit elements, the INIC configuration acts as a
charge source or sink, causing an input or output current
from ground to the system. Our current feed from the INIC
is arranged such that currents between two connected
voltage nodes retain equal magnitude but flow in opposite
directions. This yields an antisymmetric contribution to
JTCC and breaks reciprocity.
We name the TCC Hermitian if JTCC is anti-Hermitian,

i.e., JTCC ¼ −J†TCC, which leads to imaginary admittance
eigenvalues and, hence, real eigenfrequencies ωðkÞ [28].
The stationary time evolution of a TCC initial state is then
conveniently expressed in termsofTCCenergy eigenmodes.
JTCC is connected to the TCC’s Hamiltonian formulation
[28], as the eigenfrequencies ωðkÞ are given by the poles
of the Greens function GTCC ¼ J−1TCC and, hence, relate to
the roots of the admittance spectrum jTCC(ωðkÞ) ¼ 0
[Fig. 2(b)].
Topological phase diagram.—We define the Chern num-

ber for the lower admittance band asC¼ð1=2πÞH d2kBðkÞ,

where BðkÞ denotes the Berry curvature [28]. It is invariant
under a change of the Bravais vector gauge [21]. As for the
Haldane model, from gapping out the two admittance Dirac
cones due to a finite Haldane or Semenoff mass, there is a
topologically nontrivial (trivial) regimewithC ¼ 1 (C ¼ 0).
We find

C ¼ 1

2

�
sgn

�
Δþ 3

ffiffiffi
3

p

ωR0

�
− sgn

�
Δ −

3
ffiffiffi
3

p

ωR0

��
; ð3Þ

which is nonzero if ωR0 < ð3 ffiffiffi
3

p
=ΔÞ. In this case, placing

oneself in the admittance or eigenfrequency gap and
allowing for a boundary termination, one finds a chiral
mode [Figs. 2(a) and 2(b)]. The chiral nature of the voltage
boundary mode is rooted in ωðkÞ ≠ ωð−kÞ associated with
the breaking of circuit reciprocity [28] as a necessary
condition for C ≠ 0 in a topolectrical circuit.
Circuit simulations.—The TCC allows for a detailed

characterization and calibration of the chiral voltage
boundary mode. Even for a physical system as accessible
and tunable as electric circuits, various types of imper-
fections have to be taken into account. This includes
circuit element variances, parasitic resistances, and
other constraints on realistic operational amplifiers used
in the INICs. The principal timescales and parametric
dependencies of the chiral edge mode can be deduced
from the clean TCC limit (2), where we set Δ ¼ 0.
Within linear approximation of the edge mode in the
frequency spectrum [Fig. 2(b)], the group velocities of
the zigzag (vzz) and bearded edge (vbd) yield vzz ¼
ð3 ffiffiffi

3
p

=2πÞð1=R0C0Þ ¼ 2vbd. As seen from (2), the
inverse resistance R−1

0 serves as a regulation parameter
of the gap size. Our numerical analysis indicates that, for
sufficiently large values of R0 (such that ωR0C0 ≫ 1),

(a) (b)

FIG. 2. TCC band structure with a boundary. (a) Admittance band structure jTCC;xðkyÞ obtained from LTSPICE simulations for a
cylindrical geometry using open boundary conditions with a B-A termination [Fig. 1(a)] in the x direction and periodic boundary
conditions in the y direction. The system contains 30 unit cells in the open-boundary direction x and 30 unit cells in the compact
direction y. (b) Frequency band structure ωðkyÞ close to the resonance ω0 obtained from a numerical calculation for the same setting as
(a) using the Hamiltonian formalism. TCC parameters are C0 ¼ 10 μF, L0 ¼ 10 μH, R0 ¼ 20 Ω, Cg ¼ 0 F, Δ ¼ 0 F, and
f ¼ 9.188 kHz. The operational amplifiers are implemented by the LTSPICE model LT1363. A chiral boundary mode for the left
(blue) and right (red) x termination is seen in the bulk admittance (a) and the bulk frequency gap (b).
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FIG. 3. Simulated current pulse in a finite TCC. (a) An external current signal is fed into the TCC. Its position in (b)–(g) is highlighted
by a red crossed square, where all voltage profiles are normalized with respect to the input. (b)–(d) Integrated total voltage
signal resolved at each unit cell and obtained from an LTSPICE simulation for (20 × 20) unit cells with A-B termination with
ideal operational amplifiers and parasitic serial resistances of RL0

¼ 1 mΩ and RC0
¼ 0 mΩ. TCC parameters are C0 ¼ 10 μF,

L0 ¼ 10 μH, R0 ¼ 10 Ω, Δ ¼ 0 F, and Cg ¼ 0 F. (b) ðfc;ΔfexcÞ ¼ ð13.0; 1.0Þ kHz. The current spreads across the whole circuit.
(c) ðfc;ΔfexcÞ ¼ ð9.2; 0.3Þ kHz. There is a localized circuit response upon bulk injection, as opposed to feeding into the chiral edge
mode for a boundary injection (d). (e),(f) ðfc;ΔfexcÞ ¼ ð290; 10Þ kHz. Integrated total voltage signal for 10 × 10 unit cells, A-B
termination, and realistic operational amplifiers LT1363. C0 ¼ 0.1 μF, L0 ¼ 1 μH, R0 ¼ 30 Ω, RL0

¼ 150 mΩ, RC0
¼ 5 mΩ,

Δ ¼ 0 F, and Cg ¼ 0 F. In comparison to (e), (f) further implements INIC couplings to ground at each edge node, implying an
effective negative resistance of Rg ¼ −21 Ω for that connection. The chiral mode signal is significantly enhanced. (g) Time-resolved
voltage signal of the TCC with circuit parameters identical to (d) and a defect area of size (3 × 5) unit cells (gray region) implemented by
grounding the corresponding nodes.
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the exponential localization of the edge modes is tunable
through the resistance R0 in the INIC [28].
We create a finite TCC lattice, excite it with a Gaussian ac

current signal centered around ωc ¼ 2πfc and a standard
deviation Δωexc ¼ 2πΔfexc, and perform LTSPICE simula-
tions on various configurations (Fig. 3). The time evolution
of voltage configurations is modeled by the Hamiltonian
formulation of the TCC. If, as in Fig. 3(b), ωc lies within the
TCC frequency band, the current spreads across the whole
circuit, even if it is injected at the boundary (marked by a
crossed square). If, however, ωc lies within the bulk gap and
Δωexc is sufficiently small, the circuit response is crucially
different, depending on whether the current is injected in the
bulk [Fig. 3(c)] or at the boundary [Fig. 3(d)]. While it is
localized for the former, the signal propagates through the
chiral edge mode along the boundary for the latter. Note that,
due to parasitic effects introduced by the serial resistances of
inductors RL0

and capacitors RC0
, the voltage pulse in the

circuit faces dissipation caused by the shift of the resonance
frequency spectrum along the positive imaginary axis. The
most relevant parasitic effects derive from the inductor,
introducing a timewise exponential decay constant τ ¼
ð2L0=RL0

Þ which damps the chiral voltage signal. Our
simulation is refined in Figs. 3(e) and 3(f), where we study
no idealized, but publicly available operational amplifier
elements LT1363. As seen in Fig. 3(e), the realistic setting
experiences a significant signal decay already across ten unit
cells. In Fig. 3(f), we show one way to calibrate the TCC
towards a stable edge signal by adding INIC connections of
effective negative resistance Rg between the edge nodes and
ground, which effectively yields the insertion of a gain
parameter to the system. Through the adjustment of the
resistive components in the INICs connected to ground, one
can conveniently calibrate the given TCC realization closer
towards its Hermitian point, which enhances the Chern mode
signal. This is only one of several ways to improve the TCC
edge signal through an inherent TCC parameter adjustment.
In Fig. 3(f), we implement a defect (gray) area at the
boundary of the circuit, in our case by grounding the
corresponding voltage nodes. We observe a propagation
of the edge mode around the defect, showing the topological
protection of the chiral edge mode.
Conclusion.—Wehave introduced and analyzed the topo-

lectrical Chern circuit as a topological circuit array with
active INIC circuit elements. Avoltage Chern mode appears
due to the nonreciprocity induced by the INICs, which also
serve as a calibration tool to minimize the dissipative loss of
the Chern mode. This reaches an unprecedented level at
which a topological chiral edge mode is tunable in an
accessible physical environment and offers itself to further
analysis of topological circulator devices.
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