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Spin waves are investigated in yttrium iron garnet waveguides with a thickness of 39 nm and widths
ranging down to 50 nm, i.e., with an aspect ratio thickness over width approaching unity, using Brillouin
light scattering spectroscopy. The experimental results are verified by a semianalytical theory and
micromagnetic simulations. A critical width is found, below which the exchange interaction suppresses the
dipolar pinning phenomenon. This changes the quantization criterion for the spin-wave eigenmodes and
results in a pronounced modification of the spin-wave characteristics. The presented semianalytical theory
allows for the calculation of spin-wave mode profiles and dispersion relations in nanostructures.
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Spin waves and their quanta, magnons, typically feature
frequencies in the gigahertz to terahertz range and wave-
lengths in the micrometer to nanometer range. They are
envisioned for the design of faster and smaller next genera-
tional information processing devices where information is
carried by magnons instead of electrons [1–9]. In the past,
spin-wave modes in thin films or rather planar waveguides
with thickness-to-width aspect ratios ar ¼ h=w ≪ 1 have
been studied. Such thin waveguides demonstrate the effect
of “dipolar pinning” at the lateral edges, and for its
theoretical description the thin strip approximation was
developed, in which only pinning of the much-larger-in-
amplitude dynamic in-plane magnetization component is
taken into account [10–15]. The recent progress in fabrica-
tion technology leads to the development of nanoscopic
magnetic devices in which the width w and the thickness h
become comparable [16–23]. The description of such wave-
guides is beyond the thin strip model of effective pinning,
because the scale of nonuniformity of the dynamic dipolar
fields, which is described as “effective dipolar boundary
conditions,” becomes comparable to the waveguide width.
Additionally, both in-plane and out-of-plane dynamic mag-
netization components become involved in the effective
dipolar pinning as they become of comparable amplitude.
Thus, a more general model should be developed and
verified experimentally. In addition, such nanoscopic fea-
ture sizes imply that the spin-wave modes bear a strong
exchange character, since the widths of the structures are
now comparable to the exchange length [24]. A proper
description of the spin-wave eigenmodes in nanoscopic

strips which considers the influence of the exchange
interaction, as well as the shape of the structure, is funda-
mental for the field of magnonics.
In this Letter, we discuss the evolution of the frequencies

and profiles of the spin-wave modes in nanoscopic wave-
guides where the aspect ratio ar evolves from the thin film
case ar → 0 to a rectangular bar with ar → 1. Yttrium iron
garnet (YIG) waveguides with a thickness of 39 nm and
widths ranging down to 50 nm are fabricated and the
quasiferromagnetic resonance (quasi-FMR) frequencies
within them are measured using microfocused Brillouin
light scattering (BLS) spectroscopy. The experimental
results are verified by a semianalytical theory and micro-
magnetic simulations. It is shown that a critical waveguide
width exists, below which the profiles of the spin-wave
modes are essentially uniform across the width of the
waveguide. This is fundamentally different from the profiles
in state-of-the-art waveguides of micrometer [16–19] or
millimeter sizes [25,26], where the profiles are nonuniform
and pinned at the waveguide edges due to the dipolar
interaction. In nanoscopic waveguides, the exchange inter-
action suppresses this pinning due to its dominance over the
dipolar interaction and, consequently, the exchange inter-
action defines the profiles of the spin-wave modes as well as
the corresponding spin-wave dispersion characteristics.
In the experiment and the theoretical studies, we con-

sider rectangular magnetic waveguides as shown schemati-
cally in Fig. 1(a). In the experiment, a spin-wave mode is
excited by a stripline that provides a homogeneous exci-
tation field over the sample containing various waveguides
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etched from a h ¼ 39 nm thick YIG film grown by liquid
phase epitaxy [27] on gadolinium gallium garnet. The
widths of the waveguides range from w ¼ 50 nm to w ¼
1 μmwith a length of 60 μm. The waveguides are patterned
by Arþ ion beam etching using an electron-beam litho-
graphically defined Cr=Ti hard mask and are well separated
on the sample in order to avoid dipolar coupling between
them [9]. The waveguides are uniformly magnetized
along their long axis by an external field B (x direction).
Figures 1(b) and 1(c) show scanning electron microscopy
(SEM) micrographs of the largest and the narrowest
waveguide studied in the experiment. The intensity of
the magnetization precession is measured by microfocused
BLS spectroscopy [28] (see Supplemental Material S3
[29]) as shown in Fig. 1(a). Black and red lines in
Fig. 1(d) show the frequency spectra for a 1 μm and a
50 nm wide waveguide, respectively. No standing modes
across the thickness were observed in our experiment, as
their frequencies lie higher than 20 GHz due to the small
thickness. The quasi-FMR frequency is 5.007 GHz for the
1 μm wide waveguide. This frequency is comparable to
5.029 GHz, the value predicted by the classical theoretical
model using the thin strip approximation [12–14,34]. In
contrast, the quasi-FMR frequency is 5.35 GHz for a 50 nm
wide waveguide which is much smaller than the value of
7.687 GHz predicted by the same model. The reason is that
the thin strip approximation overestimates the effect of
dipolar pinning in waveguides with aspect ratio ar close to
one, for which the nonuniformity of the dynamic dipolar
fields is not well localized at the waveguide edges.
Additionally, in such nanoscale waveguides, the dynamic

magnetization components become of the same order of
magnitude and both affect the effective mode pinning, in
contrast to thin waveguides, in which the in-plane mag-
netization component is dominant.
In order to accurately describe the spin-wave character-

istic in nanoscopic longitudinally magnetized waveguides,
we provide a more general semianalytical theory which
goes beyond the thin strip approximation. Please note that
the theory is not applicable in transversely magnetized
waveguides due to their more involved internal field
landscape [16]. The lateral spin-wave mode profile
mkxðyÞ and frequency can be found from [35,36]

−iωkxmkxðyÞ ¼ μ × ½Ω̂kx ·mkxðyÞ�; ð1Þ

with appropriate exchange boundary conditions, which
take into account the surface anisotropy at the edges
(see Supplemental Material S1 [29]). Here, μ is the unit
vector in the static magnetization direction and Ω̂kx is a
tensorial Hamilton operator, which is given by

Ω̂kx ·mkxðyÞ ¼
�
ωH þ ωMλ

2

�
k2x − d2

dy2

��
mkxðyÞ

þ ωM

Z
Ĝkxðy − y0Þ ·mkxðy0Þdy0: ð2Þ

Here, ωH ¼ γB, B is the static internal magnetic
field that is considered to be equal to the external field
due to the negligible demagnetization along the x direction,
ωM ¼ γμ0Ms, γ is the gyromagnetic ratio. ĜkxðyÞ is the
Green’s function (see Supplemental Material S1 [29]).
A numerical solution of Eq. (1) gives both the spin-wave

profiles mkx and frequency ωkx. In the following, we will
regard the out-of-plane componentmzðyÞ to show the mode
profiles, representatively. The profiles of the spin-wave
modes can be well approximated by sine and cosine
functions. In the past, it was demonstrated that in micro-
scopic waveguides, that the fundamental mode is well fitted
by the functionmzðyÞ ¼ A0 cosðπy=weffÞwith the amplitude
A0 and the effectivewidthweff [12,13]. This mode, as well as
the higher modes, are referred to as “partially pinned.”
Pinning hereby refers to the fact that the amplitude of the
modes at the edges of thewaveguides is reduced. In that case,
the effective width weff determines where the amplitude of
the modes would vanish outside the waveguide [9,12,23].
With this effective width, the spin-wave dispersion relation
can also be calculated by the analytical formula [9]

ω0ðkxÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ωHþωMðλ2K2þFyy

kx
Þ�½ωHþωMðλ2K2þFzz

kx
Þ�

q
;

ð3Þ

where K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ κ2

p
and κ ¼ π=weff . The tensor F̂kx ¼

ð1=2πÞ R∞−∞ðjσkj2=w̃ÞN̂kdky accounts for the dynamic

FIG. 1. (a) Sketch of the sample and the experimental con-
figuration: a set of YIG waveguides is placed on a microstrip line
to excite the quasi-FMR in the waveguides. BLS spectroscopy is
used to measure the local spin-wave dynamics. (b) and (c) SEM
micrograph of a 1 μm and a 50 nm wide YIG waveguide of 39 nm
thickness. (d) Frequency spectra for 1 μm and 50 nm wide
waveguides measured for a respective microwave power of 6
and 15 dBm.
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demagnetization, σk ¼
R w=2
−w=2mðyÞe−ikyydy is the Fourier

transform of the spin-wave profile across the width of the
waveguide, w̃ ¼ R w=2

−w=2mðyÞ2dy is the normalization of the
mode profile mzðyÞ.
In the following, the experiment is compared to the theory

and to micromagnetic simulations. The simulations are
performed usingMUMAX3 [37]. The structure is schemati-
cally shown in Fig. 1(a). The following parameters were
used: the saturation magnetization Ms ¼ 1.37 × 105 A=m
and the Gilbert damping α ¼ 6.41 × 10−4 were extracted
from the plain film via ferromagnetic resonance spectros-
copy before patterning [38].Moreover, a gyromagnetic ratio
γ ¼ 175.86 rad=ðns TÞ and an exchange constant A ¼
3.5 pJ=m for a standard YIG film were assumed. An
external fieldB ¼ 108.9 mT is applied along thewaveguide
long axis (see Supplemental Material S2 [29]).
The central panel of Fig. 2 shows the spin-wave mode

profile of the fundamental mode for kx ¼ 0, which corre-
sponds to the quasi-FMR, in a 1 μm (a2) and 50 nm (b2)
wide waveguide which has been obtained by micromag-
netic simulations (red dots) and by solving Eq. (1) numeri-
cally (black lines) (higher width modes are discussed in
Supplemental Material S6 [29]). The top panels (a1) and
(b1) illustrate the mode profile and the local precession
amplitude in the waveguide. As it can be seen, the two
waveguides feature quite different profiles of their funda-
mental modes: in the 1 μm wide waveguide, the spins are

partially pinned and the amplitude of mz at the edges of the
waveguide is reduced. This still resembles the cosinelike
profile of the lowest width mode n ¼ 0 that has been well
established in investigations of spin-wave dynamics in
waveguides on the micron scale [19,23,39] and that can
be well described by the simple introduction of a finite
effective width weff > w (weff ¼ w for the case of full
pinning). In contrast, the spins at the edges of the narrow
waveguide are completely unpinned and the amplitude of
the dynamic magnetization mz of the lowest mode n ¼ 0 is
almost constant across the width of the waveguide, result-
ing in weff → ∞.
To understand the nature of this depinning, it is instruc-

tive to consider the spin-wave energy as a function of the
geometric width of the waveguide normalized by the
effective width w=weff . This ratio corresponds to some
kind of pinning parameter taking values in between 1 for
the fully pinned case and 0 for the fully unpinned case. The
system will choose the mode profile which minimizes the
total energy. This is equivalent to a variational minimiza-
tion of the spin-wave eigenfrequencies as a function of
w=weff . To illustrate this, the lower panels of Figs. 2(a3) and
2(b3) show the normalized square of the spin-wave
eigenfrequencies ω02=ω2

M for the two different widths as
a function of w=weff . Here, ω02 refers to a frequency square,
not taking into account the Zeeman contribution
(ω2

H þ ωHωM), which only leads to an offset in frequency.
The minimum of ω02 is equivalent to the solution with the
lowest energy corresponding to the effective width weff . In
addition to the total ω02 (black), also the individual
contributions from the dipolar term (red) and the exchange
term (blue) are shown, which can only be separated
conveniently from each other if the square of Eq. (3) is
considered for kx ¼ 0. The dipolar contribution is non-
monotonic and features a minimum at a finite effective
width weff , which can clearly be observed for w ¼ 1 μm.
The appearance of this minimum, which leads to the effect
known as “effective dipolar pinning” [13,14], is a result of
the interplay of two tendencies: (i) an increase of the
volume contribution with increasing w=weff , as for
common Damon-Eshbach spin waves, and (ii) a decrease
of the edge contribution when the spin-wave amplitude at
the edges vanishes (w=weff → 1). This minimum is also
present in the case of a 50 nm wide waveguide (red line),
even though this is hardly perceivable in Fig. 2(b3) due to
the scale. In contrast, the exchange leads to a monotonic
increase of frequency as a function of w=weff , which is
minimal for the unpinned case, i.e., w=weff ¼ 0 implying
weff → ∞, when all spins are parallel. In the case of the
50 nm waveguide, the smaller width and the corresponding
much larger quantized wave number in the case of pinned
spins would lead to a much larger exchange contribution
than this is the case for the 1 μm wide waveguide (please
note the vertical scales). Consequently, the system avoids
pinning and the solution with lowest energy is situated at

FIG. 2. Schematic of the precessing spins and simulated
precession trajectories (ellipses in the second panel) and spin-
wave profile mzðyÞ of the quasi-FMR. The profiles have been
obtained by micromagnetic simulations (red dots) and by the
quasianalytical approach (black lines) for an (a) 1 μm and a
(b) 50 nm wide waveguide. Bottom panel: Normalized square of
the spin-wave eigenfrequency ω02=ω2

M as a function of w=weff
and the relative dipolar and exchange contributions.
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w=weff ¼ 0. In contrast, in the 1 μm wide waveguide, the
interplay of dipolar and exchange energy implies that energy
is minimized at a finite w=weff . The top panel of Fig. 2(b1)
shows an additional feature of the narrow waveguide: as the
aspect ratio of the waveguides approaches unity, the ellip-
ticity of precession, a well-known feature of micron-sized
waveguideswhich still resemble a thin film [23,40], vanishes
and the precession becomes nearly circular. Also, in nano-
scale waveguides, the ellipticity is constant across the width,
while in the 1 μm wide waveguide it can be different at the
waveguide center and near its edges. Please note that the
pinning phenomena and ellipticity of precession also influ-
ence the spin-wave lifetime which is described in the
Supplemental Material S5 [29].
As it is evident from the lower panel of Fig. 2, the

pinning and the corresponding effective width have a large
influence on the spin-wave frequency. This allows for an
experimental verification of the presented theory, since the
frequency of partially pinned spin-wave modes would be
significantly higher than in the unpinned case. Black
squares in Fig. 3(a) summarize the dependence of the
frequency of the quasi-FMR measured for different widths
of the YIG waveguides. The magenta line shows the
expected frequencies assuming pinned spins, the blue
(dashed) line gives the resonance frequencies extrapolating
the formula conventionally used for micron-sized wave-
guides [34] to the nanoscopic scenario, and the red line
gives the result of the theory presented here, together with

simulation results (green dashed line). As it can be seen, the
experimentally observed frequencies can be well repro-
duced if the real pinning conditions are taken into account.
As has been discussed along with Fig. 2, the unpinning

occurs when the exchange interaction contribution
becomes so large that it compensates the minimum in
the dipolar contribution to the spin-wave energy. Since the
energy contributions and the demagnetization tensor
change with the thickness of the investigated waveguide,
the critical width below which the spins become unpinned
is different for different waveguide thicknesses. This is
shown in Fig. 3(b), where the inverse effective widthw=weff
is shown for different waveguide thicknesses. Symbols are
the results of micromagnetic simulations, lines are calcu-
lated semianalytically. As can be seen from the figure, the
critical width linearly increases with increasing thickness.
This is summarized in the inset, which shows the critical
width (i.e., the maximum width for which w=weff ¼ 0) as a
function of thickness. The criticalwidths forYIG, Permalloy,
CoFeB, and Heusler compound (Co2Mn0.6Fe0.4Si) with
different thicknesses are given in the Supplemental
Material S9 [29]. A simple empirical linear formula is found
by fitting the critical widths for different materials in a wide
range of thicknesses:

wcrit ¼ 2.2hþ 6.7λ; ð4Þ

where h is the thickness of the waveguide and λ is the
exchange length. Please note that additional simulationswith
rough edges and a more realistic trapezoidal cross section of
the waveguides are also provided in the Supplemental
Material S7, S8 [29]. The results show that these effects
have a small impact on the critical width.
Up to now, the discussion was limited to the special case

of kx ¼ 0. In the following, the influence of a finite wave
vector will be addressed. The spin-wave dispersion relation
of the fundamental (n ¼ 0) mode obtained from micro-
magnetic simulations (color code) together with the
semianalytical solution (white dashed line) are shown in
Fig. 3(c) for the YIG waveguide of w ¼ 50 nm width. The
figure also shows the low-wave-number part of the
dispersion of the first width mode (n ¼ 1), which is pushed
up significantly in frequency due to its large exchange
contribution. Both modes are described accurately by the
quasianalytical theory. As it is described above, the spins
are fully unpinned in this particular case. In order to
demonstrate the influence of the pinning conditions on
the spin-wave dispersion, a hypothetic dispersion relation
for the case of partial pinning is shown in the figure with a
dash-dotted white line (the case of w=weff ¼ 0.63 is
considered that would result from the usage of the thin
strip approximation [12]). One can clearly see that the spin-
wave frequencies in this case are considerably higher.
Figure 3(d) shows the inverse effective width w=weff as
a function of the wave number kx for three exemplary

FIG. 3. (a) Experimentally determined resonance frequencies
(black squares) together with theoretical predictions and micro-
magnetic simulations. (b) Inverse effective width w=weff as a
function of the waveguide width. The inset shows the critical
width (wcrit) as a function of thickness h. (c) Spin-wave
dispersion relation of the first two width modes from micro-
magnetic simulations (color code) and theory (dashed lines).
(d) Inverse effective width w=weff as a function of the spin-wave
wave number kx for different thicknesses and waveguide widths,
respectively.
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waveguide widths of w ¼ 50, 300, and 500 nm. As it can be
seen, the effective width and, consequently, the ratio w=weff
shows only a weak nonmonotonic dependence on the spin-
wave wave number in the propagation direction. This
dependence is a result of an increase of the inhomogeneity
of the dipolar fields near the edges for larger kx, which
increases pinning [14], and of the simultaneous decrease of
the overall strength of dynamic dipolar fields for shorter
spin waves. Please note that the mode profiles are not only
important for the spin-wave dispersion. The unpinned
mode profiles will also greatly improve the coupling
efficiency between two adjacent waveguides [9,41–43].
In conclusion, the quasi-FMR of individual wires with

widths ranging from 1 μm down to 50 nm are studied by
means of BLS spectroscopy. A difference in the quasi-FMR
frequency between experiment and the prediction by the
classical thin strip theory is found for 50 nm wide wave-
guides. A semianalytical theory accounting for the non-
uniformity of both in-plane and out-of-plane dynamic
demagnetization fields is presented and is employed
together with micromagnetic simulations to investigate
the spin-wave eigenmodes in nanoscopic waveguides with
aspect ratio ar approaching unity. It is found that the
exchange interaction is getting dominant with respect to the
dipolar interaction, which is responsible for the phenome-
non of dipolar pinning. This mediates an unpinning of the
spin-wave modes if the width of the waveguide becomes
smaller than a certain critical value. This exchange unpin-
ning results in a quasiuniform spin-wave mode profile in
nanoscopic waveguides in contrast to the cosinelike pro-
files in waveguides of micrometer widths and in a decrease
of the total energy and, thus, frequency, in comparison to
the fully or the partially pinned case. Our theory allows us
to calculate the mode profiles as well as the spin-wave
dispersion, and to identify a critical width below which
fully unpinned spins need to be considered. The presented
results provide valuable guidelines for applications in
nanomagnonics where spin waves propagate in nanoscopic
waveguides with aspect ratios close to one and lateral sizes
comparable to the sizes of modern CMOS technology.
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