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Magnetoresistance in many samples of Dirac semimetals and topological insulators displays non-
monotonic behavior over a wide range of magnetic fields. Here a formula of magnetoconductivity is
presented for massless and massive Dirac fermions in Dirac materials due to quantum interference of Dirac
fermions in scalar impurity scattering potentials. It reveals a striking crossover from positive to negative
magnetoresistivity, uncovering strong competition between weak localization and weak antilocalization in
multiple Cooperon channels at different chemical potentials, effective masses, and finite temperatures. This
work sheds light on the important role of strong coupling of the conduction and valence bands in the
quantum interference transport in topological nontrivial and trivial Dirac materials.
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Introduction.—The topological insulator and semimetal
have attracted a lot of attention and witnessed impressive
theoretical and experimental breakthroughs in the past
decades [1–5]. Recently, an intriguing magnetic-field-
driven crossover from positive to negative magnetoresist-
ance (MR) has been observed in a variety of topological
materials [6–16], where a notch-shaped longitudinal MR
appears in the vicinity of the zero magnetic field and turns
into a negative MR when the magnetic field exceeds some
critical value. The origin of the notch at a small field is not
completely understood and may arise from the quantum
interference effect [6–9,17] or the Zeeman energy [10,18].
The large negative longitudinal MR at higher field is
commonly attributed to the chiral anomaly and regarded
as a crucial transport signature for Weyl fermions [6–8,19–
23], but some other mechanisms are also proposed
[4,12,24–28]. Furthermore, similar MR behaviors have
been reported such as in Bi1−xSbx [6], ZrTe5 [9,29], and
Bi2Se3 [16], which are near the topological phase transition
point and might have nonzero Dirac mass to mix different
chiralities. Such a similarity indicates that the MR in those
materials could originate from the same physical process:
obviously, chiral anomaly cannot account for such a
resemblance in the systems with and without well-defined
chirality. As noted, despite of the ongoing scrutiny on the
experimental front, the MR near the transition point has
stimulated relatively little theoretical activity.
In this Letter, we have formulated a theory for MR from

the quantum interference effect in Dirac materials with
scalar impurity potential. Possible contributing Cooperon
channels are identified not only in some limiting regimes but
also in the intermediate regime where some intrinsic
symmetries are broken due to variation of the chemical
potential. The existence of the gapless Cooperon mode of a
spin singlet and orbital triplet makes theMR always positive
at smallmagnetic field, which can also be used to distinguish

different band topology. The competition of multiple
Cooperon channels leads to the nonmonotonic magneto-
transport behavior in some parameter ranges. As a demon-
stration, the formula is applied to analyze the measured data
from a Cd3As2 sample [15]. The good agreement of the
theoretical fitting suggests that the quantum interference of
Dirac fermions may account for the crossover from positive
to negative MR and its temperature dependence is domi-
nated by the electron-electron interaction.
Effective Hamiltonian and method.—The effective

Hamiltonian for three-dimensional Dirac materials on the
basis of jE↑i; jE↓i; jH↑i; jH↓i in the framework of the
k · p theory can be written as [5]

HðkÞ ¼ ℏvk · αþmðkÞβ; ð1Þ

where v is the effective velocity, ℏ is the reduced Planck
constant, k ¼ ðkx; ky; kzÞ is the wave vector, and the mass
term mðkÞ ¼ mv2 − bℏ2k2 (mv2 is an effective energy gap
and b−1 has the dimension of mass). The Dirac matrices
α ¼ τx ⊗ ðσx; σy; σzÞ and β ¼ τz ⊗ σ0, where σ and τ are
the Pauli matrices acting on spin and orbital space, respec-
tively. The Hamiltonian Eq. (1) can be diagonalized by the
Foldy-Wouthuysen transformation [30]: UHðkÞU† ¼
εðkÞβ, with U ¼ ½εðkÞ þ βHðkÞ�= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2εðkÞ½εðkÞ þmðkÞ�p
and εðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2v2k2 þm2ðkÞ

p
. The Z2 index is given by

N ¼ ½sgnðmÞ þ sgnðbÞ�=2 [31,32]. In addition, for sim-
plicity, we limit the chemical potential μ to the positive
energy branch, where the degenerate bands have a single
spherical Fermi surfacewith Fermi radii kf [the positive root
of εðkÞ ¼ μ] and Fermi velocity vf ¼ ð1=ℏÞð∂εðkÞ=∂kÞjkf.
Here we assume randomly distributed, spin- and orbital-
independent scatterers: Hdis ¼ UðrÞ14 with the correlation
function hUðrÞUðr0Þi ∼ δðr − r0Þ (see Ref. [33]).
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To calculate the conductivity, we employ the Feynman
diagram technique described in Ref. [33]. The conductivity
includes two parts, i.e., the classical conductivity σcl and its
correction σqi due to quantum interference. Here we focus
on σqi only. Usually, σqi can be expressed diagrammatically
by a contraction of spin and orbital indices of the Cooperon
structure factor ΓðqÞ and the Hikami boxes [48–50]. ΓðqÞ
can be calculated by solving the recursive equation:
ΓðqÞ ¼ Γ0 þ Γ0ΠðqÞΓðqÞ, where Γ0 is the bare impurity
scattering vertex and ΠðqÞ is the single rung of the ladder.
Here the “complexity” of Γ originates from the matrix form
of the free Green’s functions of the Dirac particles
embedded in the kernel ΠðqÞ, leading to a 16 × 16 matrix
structure for ΓðqÞ.
There are 16 Cooperon channels, and only the four

effective channels listed in Table I govern the quantum
correction to the conductivity: the genuine weak antiloc-
alization (WAL) channel 0, the doubly degenerate weak
localization (WL) channel t�, and the WL-WAL mixed
channel s according to their Cooperon gaps zi. Collecting
the contribution of all the ingredients with the same zi,
we obtain the following expression for each Cooperon
mode:

CiðqÞ ¼
F i

l2
eq2 þ zi

; ð2Þ

with i ¼ 0; s; t�. Here, le ¼
ffiffiffiffiffiffiffiffi
D0τ

p
is the mean free path

with the classical diffusion constant D0 ¼ v2fτ=3 and the
elastic relaxation time τ, and zi is the dimensionless
Cooperon gap, describing the characteristic length scales
within which particle-hole pairs can propagate without loss.
Those modes with large zi cannot diffuse on long distances
and thus are suppressed. F i are the summed dimensionless
weighting factors for each channel, specifying how each
Cooperon channel contributes to the conductivity, positive
or negative, corresponding to WL or WAL correction.
There are five other modes which do not appear in Table I
since the weighting factor is equal to zero or the Cooperon
gap is very large. The detailed analysis for the ingredients
can be found in Ref. [33].
As shown in Fig. 1, zi and F i are functions of chemical

potential μ and exhibit different behaviors for different
band topologies. The behaviors of zi, F i, and the symmetry
pattern for each channel of the Dirac semimetal are the
same as the topological insulator which begins from
μ ¼ μc ≡mv2=

ffiffiffiffiffiffiffi
mb

p
, denoted by the vertical dashed lines

in Fig. 1(a). Hence we only need to discuss the topological
trivial and nontrivial cases. Considering that the physical
symplectic time-reversal symmetry holds for the full
Hamiltonian regardless of the parameter chosen, there is
always one gapless Cooperon mode with z0 ¼ 0 and F 0 ¼
1 for all chemical potentials, which are spin singlet and
orbital triplet. The main difference between the two

topological phases is from the channel s (red lines in
Fig. 1). It is a mixture of spin singlet and triplet and orbital
triplet, and there exists a competition between spin-singlet
and spin-triplet states. For the topological insulator, with
increasing the chemical potential, zs exhibits a multiple
crossover: 0 → finite → 0 → finite → 0 and F s changes
continuously from −1 to 1 and finally to −1. Meanwhile,
the symmetry of channel s displays an evolution as
O → U → Sp → U → O, where O, U, and Sp represent
orthogonal, unitary, and symplectic symmetry, respectively.
For the trivial insulator, with increasing the chemical
potential, the channel s displays a symmetry pattern
O → U → O, and zs, F s vary as 0 → finite → 0 and
−1 → 1 → −1, correspondingly. zt, F t, and the symmetry
pattern of the doubly degenerate WL channel t (blue lines
in Fig. 1) display similar behaviors for two distinct
topological phases. At the band edge and high energy,
the Hamiltonian Eq. (1) is dominated by the β term; this
channel becomes gapless (zt ¼ 0) and F t ¼ −1. In the
intermediate case, we have zt ≠ 0 and −1 < F t ≤ 0, where
the channel t belongs to the unitary symmetry class and
thus is partially suppressed.
Conductivity correction from quantum interference.—

The conductivity correction from the quantum interference
can be obtained by performing the q integration of Eq. (2)
and summing up the contribution from the four channels in
Table I. Consider that the integral over q diverges in the
ultraviolet limit. The integral usually should be cut off in
the ballistic scale. Similar to Ref. [51], we include the
coherent length phenomenologically in the denominator
and introduce a regulating term to make the integral
convergent, then we can find the conductivity correction
at the zero magnetic field (B ¼ 0) as [33]

(b) (c)(a)

FIG. 1. The dimensionless Cooperon gap zi and the summarized
dimensionless weighting factor F i as a function of the chemical
potential μ for (a) topological insulator (mb > 0), (b) trivial
insulator (mb < 0), and (c) Dirac semimetal (mb ¼ 0). and the
mass term(a) mv2 ¼ −0.001 eV, (b) 0.001 eV, and (c) 0. F tot is
defined as F tot ¼

P
iF i. The model parameters are fixed for all

calculations in this Letter to be bℏ2 ¼ −18 eVÅ2, ℏv ¼ 1 eVÅ.
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σqið0Þ ¼
e2

2πhle

X
i¼0;s;t�

F i

 ffiffiffiffiffiffiffiffiffiffiffiffi
zi þ 1

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zi þ

l2
e

l2
ϕ

s !
; ð3Þ

where lϕ is the coherent length due to some inelastic
scattering processes, such as the thermal excitation of
atomic lattice (phonon), and the electron-electron inter-
actions [34].
Depending on band topology, the quantum corrections

show distinct behaviors as a function of μ. As shown in
Fig. 2(a), we plot σqið0Þ [in units of e2=ð2πhleÞ� as a
function of μ in different topological phases according to
Eq. (3). For a Dirac semimetal (m ¼ 0), σqið0Þ changes
monotonically from 2 to −2 by increasing μ (black line)
and exhibits the crossover from WAL [σqið0Þ > 0] to WL
[σqið0Þ < 0] correction. The curve for m ¼ 0 [black solid
line in Fig. 2(a)] divides Fig. 2(a) into two regions, and the
trivial phase can only exist in the shadow region in
Fig. 2(a). For topological insulators (blue lines), σqið0Þ
initially changes from −2 to 2 as μ increases from jmv2j to
μc and exhibits crossover from WL to WAL. As μ further
increases, σqið0Þ changes from 2 to −2, exhibiting cross-
over fromWAL to WL. For trivial insulators (red lines), for
small jmv2j, σqið0Þ displays a similar μ dependence as the
topological phase except that σqið0Þ cannot reach up to 2
due to the suppression of the channel s. This difference in
behavior between the trivial and topological phases is
significant for a sizable jmv2j. As shown in Fig. 2(a),
when jmv2j ¼ 0.01 and 0.02 eV, the trivial phase always
exhibits WL correction. As a summary, when μ ¼ jmv2j or
∞, both the topological and trivial phase behave as two
copies of the orthogonal class and we will recover the
conventional WL case [35,36,49,52]. Only in the topo-
logical phase the whole system behaves as two copies of the
symplectic class for μ ¼ μc. In the intermediate case, the
channel s can become gapless for μ ¼ μc in the topological
phase but not in the trivial phase; thus it is always
suppressed.
Magnetoresistivity.—Experimentally, this WL and WAL

effect can be brought out by applying an external magnetic

field. It will induce a decoherence between the time-
reversal trajectories; thus the quantum conductivity cor-
rection is suppressed and gives negative MR for WL and
positive MR for WAL [34,49]. The replacement of the q
integral in the transverse direction by an appropriate sum
over the effective Landau levels [53] gives us the magneto-
conductivity as δσðBÞ ¼ σqiðBÞ − σqið0Þ, with

σqiðBÞ ¼
e2

4πhlB

X
i¼0;s;t�

F iζ

�
1

2
;
1

2
þ ðzi þ x2Þl

2
B

l2
e

�����le=lϕ
x¼1

;

ð4Þ
here, ζðs; tÞ is the Hurwitz zeta function of order s and
argument z, and lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=4eB
p

is the magnetic length
[33]. The formula is the main result in the present work, and
can be used to fit experimental data.
By using the asymptotic expansion of the Hurwitz ζ

function [54], we find

δσðBÞ¼

8>>>>><
>>>>>:

P
i

e2
4πhlB

F i
48l3B

ðl3
i −

l3e
ðziþ1Þ32

Þ 1
l2B
≪ 1

l2
0

e2
4πhlB

ζð1
2
;1
2
Þ 1

l2
0

≪ 1
l2B
≪ 1

l2s

e2
4πhlB

F totζð12 ;12Þ 1
l2t
≪ 1

l2B
≪ 1

l2e
;

ð5Þ

whereli ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzi=l2

eÞ þ ð1=l2
ϕi
Þ

q
are the effective coherent

lengths and ζð1
2
; 1
2
Þ ≈ −0.605. As shown in Figs. 2(b)–2(d),

TABLE I. The ingredients of four effective Cooperon channels
i ¼ 0; s, and t� in the basis of spin-orbital singlet and triplet
states jCτ;τz

σ;σzi≡ jτ; τzi ⊗ js; szi [τðσÞ ¼ 0; τzðσzÞ ¼ 0 represents
the pseudo(real)-spin singlet and τðσÞ ¼ 1; τzðσzÞ ¼ �1; 0 re-
present the pseudo(real)-spin triplets], the effective gaps zi, and
the weighting factors F i, which is the trace of the product of the
Cooperon structure factor ΓðqÞ and the Hikami boxes.

i Cooperon channel in jCτ;τz
σ;σzi F i zi

0 jC1;1
0;0i; jC1;−1

0;0 i F 0 ¼ 1 z0 ¼ 0

s jC1;0
0;0i; jC1;1

1;0i; jC1;−1
1;0 i F s zs

t� jC1;1
1;�1i; jC1;−1

1;�1i; jC0;0
1;�1i F t� ¼ F t zt� ¼ zt

(b)(a)

(c) (d)

FIG. 2. (a) The quantum correction to conductivity in units of
e2=ð2πhleÞ as a function of chemical potential μ for several
different Dirac mass m. The magnetoconductivity in (b) topo-
logical nontrivial phase (mv2 ¼ −0.02 eV), (c) topological trivial
phase (mv2 ¼ 0.02 eV), and (d) Dirac semimetal (mv2 ¼ 0) for
several different chemical potentials. Insets: Enlarged view for
small magnetic field denoted by the pink square region; the green
lines and the yellow lines represent the weak field asymptotic
αζð1

2
; 1
2
Þðe2=4πhlBÞ with α ¼ 1 and 2, respectively. The coherent

length lϕ ¼ 100le is much larger than the mean free path
le ¼ 20 nm.
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we plot the low-field (lB > le) magnetoconductivities with
different chemical potential μ at extreme low temperature
(lϕ ≫ le) for the topological nontrivial insulator, trivial
insulator, and Dirac semimetal, respectively. Near B ¼ 0,
δσðBÞ ∼ B2 follows a quadratic dependence on the magnetic
field. Since l0 ¼ lϕ, at low temperature this region is
sufficiently narrow which is invisible in Fig. 2 and thus can
be neglected. With increasing μ, we find the same magneto-
conductivity behaviors in the Dirac semimetal as shown in
Fig. 2(d) as the topological insulator starting from μc.We only
discuss the situations with finite Dirac mass. The magneto-
conductivity behaviors of both of the two distinct topological
phases display nonmonotonic μ dependence. In the cases of
μ ¼ jmv2j and∞, we recover the conventional WL case and
δσðBÞ ¼ −2ðe2=hÞð1=4πÞðζð1

2
; 1
2
Þ=lBÞ. In the intermediate

regime, due to the existence of the gapless channel 0, both of
the two phases exhibit

ffiffiffiffi
B

p
negative magnetoconductivity

behavior at small magnetic field (B ≪ ðℏ=4eÞð1=l2
t Þ), but

with different prefactors depending on band topology. In the
topological phase as shown in Fig. 2(b), for μ ≠ μc (zs ≠ 0),
only the gapless channel 0 gives a negative magnetoconduc-
tivity being proportional to

ffiffiffiffi
B

p
with a universal prefactor

independent of the details of the modeling parameters (green
lines in the inset), while the contributions from all the other
channelswith a finiteCooperon gap are proportional toB2 and
can be neglected. For μ ¼ μc, both the channel 0 and s are
gapless and give the same contribution to magnetoconduc-
tivity, which is twice the result of the μ ≠ μc case, i.e.,the
yellow line in the inset ofFig. 2(b).However, in the topological
trivial case, no matter where μ is located, the channel s has a
nonzeroCooperon gap and is suppressed, and all themagneto-
conductivity curves collapse onto a same universal line [see
the inset of Fig. 2(c)]. This remarkable negative magneto-
conductivity behavior at small field provides us with an
elegant way to distinguish the different topological phases
through the bulk states transport measurement. Following this
negative magnetoconductivity region at small field, we find
two distinctly different magnetoconductivity behaviors
depending on the sign of F tot (see the gray lines in Fig. 1).
For F tot < 0, which corresponds to jmðkfÞ=μj > 0.3, a
crossover from negative to positive magnetoconductivity
can be observed. For F tot > 0, the magnetoconductivity
decreases monotonically as a function of the magnetic field.
No positive magnetoconductivity is observed.
An example of the application.—As a demonstration, we

apply the present theory to analyze the measured longi-
tudinal MR of a Cd3As2 sample in Ref. [15]. Cd3As2 is a
three-dimensional Dirac semimetal, and has been studied
extensively [37–40,55]. In most experiments, a crossover
from positive to negative MR has been clearly observed
under the longitudinal configuration. A sharp dip is
gradually weakened with increasing temperature. To com-
pare with the experimental data, we convert the magneto-
conductivity δσðBÞ in Eq. (4) into the relative MR as

MR ¼ −δσðBÞ=½ρ−10 þ δσðBÞ�, with ρ0 being the experi-
mentally measured resistivity at B ¼ 0. Figure 3(a) shows
an excellent agreement between the fitting curves (solid
lines) and experimental data (open squares) at different
temperatures. It is found that the extracted coherent length
lϕ fits well with the temperature dependence lϕ ∝ T−3=4 at
low temperature, as shown in Fig. 3(b), which implies that
the decoherent mechanism is dominated by the electron-
electron interactions [34,56]. For fixed B, the relative MR
displays anomalous nonmonotonic temperature depend-
ence due to the competition of multiple Cooperon channels
in Fig. 3(c). This nonmonotonic behavior disappears for the
system with single WL or WAL correction or at a weak
field [36,57]. Different from the two-dimensional WL and
WAL [49,58–60], the relative MR in three dimensions
saturates at extremely low temperature (lϕ → ∞) [34]. All
fitting parameters in δσðBÞ (see Ref. [33]) look reasonable
and self-consistent. Thus, the good agreement between the
experimental data and theory suggests that the crossover of
MR is attributed to the quantum interference of Dirac
fermions in the Dirac semimetal.
In general, as the notch and negative MR were reported

in both gapless and gapped topological materials, such as
the alloy Bi1−xSbx [6], the Dirac semimetal Cd3As2
[15,40], and the topological insulator Bi2Se3 [16], the

(b) (c)

(a)

FIG. 3. (a) The relative longitudinal MR of a Cd2As3 sample.
The measured data (open squares) are extracted from Fig. 2(b) in
Ref. [15] and the solid lines are fitted by using Eq. (4) at different
temperature T. (b) The temperature dependence of the fitted
coherent length lϕ (open squares). The red straight line indicates
the temperature-dependent coherent length lϕ ∝ T−0.75 arising
from electron-electron interaction as predicted in Ref. [34].
(c) The relative MR as a function of temperature at several
magnetic field strengths. The calculation parameters for the solid
lines are ρ0 ¼ 20.2 mΩ cm, le ¼ 8.5 nm, η2 ¼ 0.268, and lϕ ¼
472ðT=2 KÞ−3=4 nm.
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present theory can provide a unified and quantitative
description of the nonmonotonic behaviors. Even in the
gapless Weyl-Dirac semimetals such as Na3Bi [10] and
TaAs [8], the measured notch at weak field is obviously
visible, which indicates the WAL of the charge carriers. At
higher field the Cooperon channel for WL still exists and
produces a negative MR although it could also be con-
tributed possibly by other mechanisms such as chiral
anomaly. The negative MR from different mechanisms is
distinguishable from its field and temperature dependence.
For example the chiral anomaly of Weyl fermions produces
a quadratic field-dependent MR [19]. More detailed scru-
tiny is still anticipated to have a conclusive result.
Discussion and conclusion.—The nonzero mass term in

the Dirac Hamiltonian couples Weyl fermions with oppo-
site chirality; hence the spin and pseudospin degrees of
freedom are highly entangled for Dirac materials. To
capture the effect of strong spin-orbit entanglement cor-
rectly, it is necessary to treat all the possible contributing
Cooperon channels on the same footing, which requires
one to retain the matrix structure of all the Green’s
functions [61,62]. The variation of chemical potential
controls the coupling strength between the conduction
and valence bands and causes the interplay of different
Cooperon modes. Thus, all peculiarities of the system are
rooted in the spinorlike character of the carrier wave
functions rather than the symmetry of the disorder corre-
lations. The inclusion of other types of disorder [36,63–65]
in our calculations may further break the corresponding
time-reversal symmetry of each Cooperon channel and
introduce an additional Cooperon gap being proportional to
disorder strength suppressing its contribution [66,67].
In short, we have developed a MR theory from the

quantum interference effect in Dirac materials with
scalar impurity potential by means of the Feynman
diagrammatic technique. Possible contributing Cooperon
channels are identified not only in some limiting regimes
but also in the intermediate regime where some intrinsic
symmetries are broken due to variation of the chemical
potential. The strong competition of multiple Cooperon
channels exists in topological materials with strong
coupling of the conduction and valence bands. A finite
magnetic field tends to suppress WAL and to release WL
from spin- and/or orbital-triplet Cooperon channels before
destroying the quantum interference completely, uncover-
ing a crossover from a positive to negative MR. Our
finding shows that the crossover is a consequence of
quantum interference of Dirac fermions for a large class of
Dirac materials with a strong coupling of the conduction
and valence bands.
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