
 

Ferromagnetic Mott state in Twisted Graphene Bilayers at the Magic Angle
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We address the effective tight-binding Hamiltonian that describes the insulating Mott state of twisted
graphene bilayers at a magic angle. In that configuration, twisted bilayers form a honeycomb superlattice of
localized states, characterized by the appearance of flat bands with fourfold degeneracy. After calculating
the maximally localized superlattice Wannier wave functions, we derive the effective spin model that
describes the Mott state. We suggest that the system is an exotic ferromagnetic Mott insulator, with
well-defined experimental signatures.

DOI: 10.1103/PhysRevLett.122.246402

Introduction.—Mott insulators describe materials that
exhibit insulating behavior as a result of strong local
interactions [1]. In those systems, strong on site repulsion
penalizes the kinetic energy for electrons to hop between
sites, rendering the electronic orbitals localized. The strong
degree of localization of the electronic wave functions
favors antiferromagnetic alignment of the spins due to Pauli
principle [2]. Recent experiments [3,4] indicate that twisted
graphene bilayers have a Mott state with an activation gap
of Δ ≈ 0.3 meV that undergoes a metal-insulator transition
in the vicinity of a superconducting phase [4,5]. This system
is purely made of carbon atoms, with additional degrees of
freedom inherited from graphene [6]. That has motivated the
question of whether the observed state could be described
by a novel Mott insulator [7] or other exotic correlated states
[8–12]. Unveiling the nature of the insulating state may be
key to explaining some of the remarkable properties in the
metallic phase.
By twisting two graphene sheets at a small angle of the

order of θ ∼ 1.1°, what was dubbed a “magic” angle,
interference due to hopping between the layers leads to a
moiré pattern and to a significant reconstruction of the mini
bands in themoiré Brillouin zone,which become flat [13,14].
Those flat bands have fourfold degeneracy, which is rem-
iniscent of the valley and spin quantum numbers of the
graphene sheets. In general, the confinement of interacting
Dirac fermions in flat bands is expected to create an emergent
SU(4) symmetry, as previously predicted in graphene
heterostructures [15–17] and in graphene Landau levels
[18–24]. Here, the moiré pattern forms a superlattice of
quasilocalized states with the size of the unit cell set by the
twist angle, as shown in Fig. 1.
In this Letter, we show that the low energy Hamiltonian

of the flat bands at quarter filling maps into the ferro-
magnetic spin exchange Hamiltonian on a honeycomb
superlattice,

H ¼ −
X
ij
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where Si is the localized spin on a superlattice site i, τi ¼
ðτx; τy; τzÞ≡ ðτ⊥; τzÞ is an orbital pseudospin operator that
is reminiscent of the valley quantum numbers, and Jij > 0

is the exchange coupling. The parameter ηij ¼ −1 when i,
j belong to the same sublattice, in which case the exchange
interaction has SUð4Þ symmetry, and ηij ¼ 1 otherwise,
including nearest neighbor (NN) sites. This Hamiltonian
acts in the Hilbert space, which is spanned by four
degenerate states per site, jα; σi, with α ¼ � and σ ¼
↑;↓ for the two orbital pseudospins and spin quantum
numbers, respectively.
The existence of direct exchange ferromagnetism in an

insulating state is uncommon [15] and reflects the very
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FIG. 1. (a) Moiré pattern of twisted graphene bilayers for a
twist angle of θ ¼ 1.8°. Each layer has two sublattices, A and B.
The pattern indicates regions of AA, AB, and BA alignment.
Fourfold degenerate states are observed around the AA stacking
regions. (b) Twisted graphene bilayer rotated around A sites
(AA region). At those points, the bilayer has D3 symmetry,
comprised of a C3 rotation around the z axis and a C0

2 rotation
around the y axis (dashed line) in between two layers. Red and
blue dots: top and bottom layer.
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unusual shape of the Wannier orbitals in this system.
Ferromagnetism has been recently observed in insulating
van der Waals heterostructures of magnetic chromium
trihalide materials, Cr X3 (X ¼ I, Br, Cl) [25–27], which
have crystalline field anisotropies that produce an ordered
Ising state. To the best of our knowledge, we are not aware of
any examples of ferromagneticMott states that donot involve
orbital ordering via a superexchange mechanism [28,29].
After performing calculations of the maximally localized

Wannier orbitals of the moiré superstructure, we establish
the parameters of aminimal interacting tight-binding model
that captures the Mott physics near the magic angle. We
show that even though the orbitals are well localized in the
Mott regime at a quarter filling, surprisingly the direct
exchange interaction between different sites is dominant
and favors ferromagnetic spin order at zero temperature.
While charging effects [30,31], which were not taken into
account, may change our conclusions, the scenario of zero
temperature ferromagnetism in twisted graphene bilayers
seems in line with the reduced degeneracy of the Landau
levels measured with Shubnikov–de Haas experiments near
quarter filling [3]. We discuss the experimental signatures
of this state.
Bloch Hamiltonian.—The free Hamiltonian for twisted

graphene bilayers can be constructed at the lattice level
using a parametrization for the hopping amplitudes
between sites in the two different sheets,

H ¼
 
Hð1Þ

g H⊥
H†

⊥ Hð2Þ
g

!
; ð2Þ

where Hg is the graphene Hamiltonian and H⊥ is the
interlayer hopping between the two sheets in real space.
The moiré pattern can be used to construct Bloch states that
are periodic in the superlattice vectors Ti. For commensu-
rate structures, the moiré lattice vectors are parametrized
by two integers m and r, and correspond to the twist angle
cos θ ¼ 1 − r2=2ð3m2 þ 3mrþ r2Þ, or equivalently θ ≈
r=

ffiffiffi
3

p
m for small angles.

In a basis for Bloch states

Φk;σ ≡ ðjφð1Þ
k;A;σi; jφð1Þ

k;B;σi; jφð2Þ
k;A;σi; jφð2Þ

k;B;σiÞ; ð3Þ

defined in the two sublattices A and B of each of the two
layers (1,2), the Bloch Hamiltonian of the twisted system

Hkðr; r0Þ ¼
X
i

Hðr; r0 þ TiÞeik·Ti ð4Þ

satisfies Hkðr; r0 þ TiÞ ¼ Hkðr; r0Þe−ik·Ti . In that basis,

½Hk�ab ¼ tabk ðr; r0Þ ¼
X
j

eik·Tj tabðr; r0 þ TjÞ ð5Þ

are the matrix elements of Eq. (2), with a, b indexes running
over the four components of basis [Eq. (3)]. The hopping
amplitudes tabðr; r0Þ ¼ cos2θzVσðr− r0Þ þ sin2θVπðr− r0Þ,
where cos θz ¼ d=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ ðr − r0Þ2

p
with d being the dis-

tance between the planes. VσðrÞ and VπðrÞ are Slater-Koster
functions [32], which decay exponentially and were para-
meterized following previous ab initio works [33,34].
Diagonalization of the Bloch Hamiltonian results in a set

of four-component Bloch eigenspinors ψ̂n;kðrÞ≡ hrjψ̂n;ki
that satisfy ψ̂n;kðrþ TÞ ¼ ψ̂n;kðrÞeik·T and correspond to
the energy spectrum εnðkÞ. We calculate the bands for a
small twist angle of θ ¼ 1.0845° (m ¼ 30, r ¼ 1) near the
experimental magic angle θ0 ∼ 1.1°. At that angle, the
Bloch Hamiltonian is a Ns × Ns matrix with Ns ¼ 11164
sites inside the moiré unit cell. The low energy bands
(n ¼ 1;…; 4), shown in Fig. 2(b), are fourfold degenerate
at the K points (excluding the spin). They have a twofold
degeneracy at the other two high symmetry points of the
Brillouin zone, Γ0 and M0, where they open up a gap
between particle and hole branches. At the Γ0 point, the
Bloch states have C3 and C0

2y symmetry, which involves a π
rotation around the y axis placed halfway between the two
layers [shown in Fig. 1(b)]. We also find numerically that
all Bloch eigenspinors satisfy the time reversal symmetry
(TRS) relation T ψ̂n;kðrÞ ¼ ψ̂�

n;−kðrÞ, with k measured
from the center of the moiré Brillouin zone at Γ0. The K
and K0 points are hence related by TRS, and must have
opposite π Berry phases. This fact indicates that the Bloch
states of the twisted structure do not suffer from Wannier
obstructions [35], and hence could be reconstructed
through a proper basis of Wannier states.
Wannier orbitals.—From the Bloch states of the four low

energy bands, one can extract the Wannier wave functions
in the moiré unit cell,

jRνi ¼ 1

Ns

X
n;k

e−ik·RUnνðkÞjψ̂n;ki; ð6Þ

where R is the center of the Wannier orbitals and UnνðkÞ
some 4 × 4 unitary transformation. The four component
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FIG. 2. (a) Moiré Brillouin zone of the twisted graphene system
(blue hexagon), containing the K and K0 points at the corners.
(b) Flat bands in the moiré Brillouin zone for θ ¼ 1.0845°, near
the magic angle θ0 ∼ 1.1°. The Γ0 point is at the center of the
Moire Brillouin zone. M0 is the midpoint between K and K0
points.
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Wannier spinors Ŵνðr −RÞ≡ hrjRνi are not unique since
adding a phase to the Bloch state e−ik·rψ̂nkðrÞ corresponds
to a new set of Wannier orbitals. We choose the set
of maximally localized Wannier orbitals in finding the
unitary transformation that minimizes their spread,
Ω ¼Pν½hr2iν − hri2ν�, with hXiν ≡ hRνjXjRνi. The mini-
mization was carried with the WANNIER90 package [36].
The momentum space k mesh points are generated by the
reciprocal supercell lattice vectors with 300 × 300 grid
points using periodic boundary conditions, including all
high symmetry points.
Following the symmetry arguments outlined in Ref. [37],

we perform the minimization of the spread enforcing the C3

and C0
2y symmetry for the Bloch states around the Γ0 points.

Those two symmetries describe a D3 point symmetry
group, which is a local symmetry of the lattice at AA site
regions when the two graphene layers are rotated around a
site [38], as depicted in Fig. 1(b). In agreement with earlier
results [37,39], the Wannier functions that satisfy those
symmetries have three sharp peaks centered around either
the AB or BA sites, forming a honeycomb superlattice with
twofold degenerate orbitals per site, as shown in Fig. 3.
On a given moiré unit cell, we label the Wannier orbitals

by the four-component spinors Ŵν ¼ ðwν;1; wν;2;
wν;3; wν;4ÞT . Among the four orbitals, Ŵνðr −RjÞ, two
are centered at Rj ∈ AB sites and are eigenstates of the C3

rotation operator, with eigenvalues ϵ ¼ e2πi=3 and ϵ�. The
other two are centered at Rj ∈ BA sites and also have
the same eigenvalues ϵ and ϵ�. From now on, we will label
the Wannier orbital spinors based on their C3 rotation
eigenvalues, C3Ŵαðr −RjÞ ¼ eα2πi=3Ŵαðr −RjÞ, with
α ¼ � and Rj ∈ AB or BA. The two degenerate orbitals
centered at a given superlattice site Rj are related by TRS,

T Ŵαðr −RjÞ ¼ Ŵ−αðr −RjÞ. Orbitals in NN superlattice
sites Ri and Rj are related by the C0

2 rotation,
C0
2Ŵαðr −RiÞ ¼ Ŵ−αðr −RjÞ.
Tight binding Hamiltonian.—The effective lattice model

of this problem can be constructed by rewriting the Bloch
Hamiltonian [Eq. (4)] into a kinetic energy term of the form

H ¼
X
i;j

tαβðRijÞd†α;σðRiÞdβ;σðRjÞ; ð7Þ

where Ri indexes the sites of the honeycomb superlattice,
Rij ≡Ri −Rj and the dαðRÞ annihilates an electron with
orbital of type α and spin σ at a given superlattice site. The
hopping matrix elements between superlattice sites can be
extracted from the matrix elements of the Hamiltonian
[Eq. (2)] in a basis of maximally localized Wannier
functions,

tαβðRiÞ ¼ hRαjHjRþRi; βi: ð8Þ
Due to the translational invariance of the superlattice,
tαβðRÞ ¼ h0; αjHjR; βi. For NN sites, we find that
jtααjð1Þ ≈ 0.384 meV whereas for nth NN sites
tα;−αðnÞ ¼ 0. Hence, hopping between sites conserves
the orbital pseudospin quantum number α ¼ �. jtααjðnÞ
has a nontrivial dependence with the distance between sites
(see Table I), in qualitative agreement with the findings of
Ref. [37] for a significantly larger twist angle.
The Coulomb interactions between lattice sites can be

written as HC ¼ 1
2

R
drdr0ρðrÞ½e2=ðκjr − r0jÞ�ρðr0Þ, where

ρðrÞ is the electron density and κ ≈ 5 the dielectric constant
of twisted bilayers encapsulated in boron nitride. We can
rewrite this term in terms of dα;σ operators by expressing
the density ρðrÞ ¼PσΨ̂

†
σðrÞΨ̂σðrÞ in terms of field oper-

ators Ψ̂σðrÞ ¼
P

α;jŴαðr −RjÞdα;σðRjÞ. The resulting
Coulomb Hamiltonian has a direct term and also an
exchange part, HC ¼ Hd þHe. The first term,

Hd ¼
X
i;j

VαβðRijÞnαðRiÞnβðRjÞ; ð9Þ

with nαðRÞ ¼Pσd
†
α;σðRÞdα;σðRÞ the density operator and

repeated α, β indexes to be summed. The Coulomb coupling
is cast as an overlap integral of Wannier orbital spinors,
VαβðRijÞ¼1

2

R
drdr0jŴαðriÞj2½e2=ðκjr−r0jÞ�jŴβðr0jÞj2, with

Rij ¼ Ri −Rj and rj ≡ r −Rj. The exchange part is

He ¼
X
i≠j

Jαα0;ββ0 ðRijÞd†α;σðRiÞd†β;σ0 ðRjÞdβ0;σ0 ðRiÞdα0;σðRjÞ;

ð10Þ

where the coupling Jαα0;ββ0 ðRijÞ¼1
2

R
drdr0Ŵ†

αðriÞŴα0 ðrjÞ½e2=
ðκjr−r0jÞ�Ŵ†

βðr0jÞŴβ0 ðr0iÞ is the exchange integral between
lattice sites. In general, we find that the combinations
Jαβ;βαðRijÞ ¼ Jαβ;αβðRijÞ ¼ 0 for α ≠ β, within the

(b)
BA

AAAB

(a) (c)

FIG. 3. Wannier wave function in the moiré superlattice.
Amplitude jŴþðr −RjÞj ¼ jŴ−ðr −RjÞj of the orbitals cen-
tered around (a) j ∈ AB sites, and (b) j ∈ BA sites, showing three
sharp peaks. The orbitals Ŵα have twofold degeneracy per site,
and are eigenstates of the C3 rotation operator with eigenvalues ϵ
(α ¼ þ), and ϵ� (α ¼ −). (c) Sketch of the orbitals in the moiré
unit cell (green line). Orange: AB centered Wannier orbitals.
Blue: BA centered ones. The gray dotted line indicates the
honeycomb superlattice formed by the center of the orbitals.
Their unusual three peak structure indicates strong overlap
between superlattice sites, favoring ferromagnetic ordering at
zero temperature.
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numerical precision. That includes the on site exchange
(Hund’s coupling), which is zero due to the orthogonality
between same site Wannier spinors [15,39]. From now on,
we define the only nonzero combination Jαα;ββ ≡ Jαβ.
The numerical values of the hopping energy, Coulomb

interaction and the exchange interaction for nth NNs,
is shown in Table I, which is the second main result
of the Letter. We find the on site Hubbard Uαβ≡
Vαβð0Þ ¼ 21.2 meV, which is much larger than the first
NN hopping tð1Þ, and hence the ratio U=tð1Þ ∼ 55 falls
comfortably in the realm of the Mott regime.
The exchange interaction for first NN sites (n ¼ 1) is

jJαβð1Þj≈5meV. In general, the diagonal terms JααðnÞ > 0

are positive definite, whereas the off diagonal ones can be
either positive or negative, Jα;−αðnÞ ≈�JααðnÞ, with þ (−)
for i, j sites in the same (opposite) sublattice, as shown in
Table I. For sites in the same sublattice, the fact that
JαβðnÞ ≈ JααðnÞ > 0 is the same for all four combinations
of α; β ¼ � indexes hints at an emergent SUð4Þ symmetry
between spin and orbital degrees of freedom at quarter
filling. For sites in opposite sublattices, the exchange
interaction has SUð2Þ symmetry in the spin. It has also
both ferro ðJαα > 0) and antiferromagnetic ðJα;−α < 0Þ
correlations in the orbital sector, depending on the ori-
entation of the pseudospins.
Since Hund’s coupling is zero, at quarter filling the lower

flat bands are in the unitary limit [40], with each moiré
superlattice siteRj being singly occupied and having a well-
defined spin σ and orbital quantum number α ¼ �. Mapping
the exchange term in terms of spin Si ¼ 1

2
d†α;σðRiÞσ⃗σσ0

dα;σ0 ðRiÞ and pseudospin τi ¼ 1
2
d†α;σðRiÞσ⃗αβdβ;σðRiÞ oper-

ators, the result is the ferromagnetic exchange interaction
announced in Eq. (1), with Jij ≡ JααðnÞ > 0 [41]. This
Hamiltonian favors ferromagnetic alignment of the spins at
zero temperature (T ¼ 0). In the orbital sector different states
are possible, including cantedmagnetismwith ferromagnetic
order in the pseudospin τz component, accompanied by
staggered (antiferromagnetic) order in the transverse, τ⊥
direction [42].

The superexchange interaction follows from second
order perturbation theory in the hopping energy [43,44]
and has the same form as the exchange term in Eq. (1) for
ηij ¼ −1 [15]. The superexchange term has SUð4Þ sym-
metry and favors antiferromagnetic alignment between
nearest neighbor sites due to Pauli principle. It’s coupling
J → −t2=U ≈ −0.01 meV is very small compared to the
exchange one, and can be safely ignored.
Ferromagnetic Mott state.—Mott-Hubbard insulators

have strongly localized states and are known to be over-
whelmingly antiferromagnetic due to strong superexchange
interactions (t2=U ≫ J) [45–47]. Ferromagnetism occurs
mostly either in metallic systems or in metallic bands
hybridized with localized moments via the Anderson impu-
rity mechanism [45,46,48]. Within the Hubbard model
framework, the only credible mechanism for spin ferromag-
netism exists for multiorbital systems in the context of the
Kugel-Khomskii model [43,47], where superexchange can
become effectively ferromagnetic in the presence of stag-
gered orbital ordering.
We conjecture that the flat bands in twisted graphene

bilayers are in a way intermediate between ferromagnetic
bad metals and antiferromagnetic Mott-Hubbard insulators.
Due to the exotic shape of the Wannier orbitals, the
hierarchy between hopping, direct exchange and the local
Hubbard interaction, t ≪ J ≪ U, leads to an anomalously
small superexchange.
In spite of the fact that U=t is large, the strong overlap

between the orbitals found in the noninteracting theory
suggests that the system is potentially close to an insula-
tor-metal transition [1] due to a charge fluctuation mecha-
nism, which presently is not well understood [30,31].
Nevertheless, the form of the effective spin Hamiltonian
[Eq. (1)] should not depend on the details of this mechanism,
as long as the system remains quarter filled and does not
undergo a charge-ordering transition (potentially accompa-
nied by dimerization) due toCoulomb interactions. In carbon
lattices, which are notoriously stiff [49], charge density wave
instabilities are hindered by the high elastic energy cost for
the system to deform the lattice and restore charge neutrality.
Interactions should increase the spread of the maximally

localized Wannier orbitals, making the system more met-
allic [31]. In the absence of charge order, the dressed
Wannier functions should preserve the symmetries of the
lattice and renormalize the couplingsU, J, and the hopping
t. In that regard, Table I provides an upper bound for the
Hubbard U coupling, and a lower bound for the exchange
interaction J and t [50].
Experimental signatures.—Since the honeycomb super-

lattice is not frustrated, it will exhibit ferromagnetic spin
order at T ¼ 0 in the universality class of the ferromagnetic
(spin S) Heisenberg model. It is well known that the
magnetization M, correlation length ξ and the spin sus-
ceptibility χ exhibit peculiar features in two dimensions,
since for any T ≠ 0 the system is disordered, with zero

TABLE I. Electronic hopping amplitude jtααj, direct Coulomb
interaction Vαβ and exchange interaction Jαβ for various nearest
neighbor sites: on site (0), and nth nearest neighbors (n), with
n ¼ 1–6. Energies in meV calculated for κ ¼ 5. n ¼ 1; 3, and 4
correspond to sites in opposite sublattices. Jαα ≈�Jα;−α, with
þð−Þ for sites in the same (opposite) sublattice.

n |tααj Vαβ Jαα Jα;−α

0 0 21.2 0 0
1 0.384 16.9 5.09 −4.93
2 0.005 16.7 1.11 1.02
3 0.447 15.6 0.52 −0.51
4 0.162 12.6 0.25 −0.18
5 0.084 11.58 0.16 0.12
6 0.007 9.68 0.09 0.08
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Curie temperature. The model has been extensively studied
both in zero and finite external magnetic field H on various
lattices [51–54]. At finite field H ≠ 0, MðHÞ is finite and
strongly temperature dependent. In the regime T=J ≪ 1,
which can take place for T ≈ 2 K (where T=J ≈ 1=25), a
weak magnetic field of H ≈ 0.2 T (i.e., H=J ≈ 1=250Þ
already provides nearly maximum magnetization [52,53].
The spin susceptibility χðHÞ is zero for T ¼ 0 and H ≠ 0
and exhibits a characteristic finite-temperature peak
at T ¼ Tχ which scales in a well-defined way with external
field.
It has been established experimentally that doping away

from the Mott insulating phase leads to metallic (and even
superconducting) behavior [3,4]. A profound new feature
has emerged at finite magnetic field, which persists both in
weak (Shubnikov–de Haas oscillations) and strong field
limits (quantum Hall effect), for hole doping [3,4]. Those
measurements suggest a small Fermi surface that develops
from doping the correlated insulating phase, accompanied
by a possible symmetry breaking of yet unknown origin.
The resulting state has a fermionic degeneracy of 2,
indicating a reduction of the original fourfold band degen-
eracy by a factor of 2.
This behavior is consistent with the system being in the

proximity to a ferromagnetic Mott state, in which the spins
align when nudged by an infinitesimally weak field. At the
same time, any long-range order in the orbital sector is
expected to be much more fragile and disappear quickly
due to charge disorder and the motion of holes in the
metallic state. Therefore we conjecture that, in the weak
field limit, the ground state emerging from doping the
ferromagnetic insulator would be a ferromagnetic, spin-
polarized, strongly correlated metal, with the orbital pseu-
dospin symmetry preserved.

B. U. acknowledges P. Jarillo-Harillo, T. Senthil,
K. Beach, and O. Vafek for discussions. K. S. and B. U.
acknowledge NSF CAREER Grant No. DMR-1352604 for
support.

Note added.—After submission of the manuscript we
became aware of Ref. [56], which identified a distinct
ferromagnetic ground state at quarter filling using different
methods. That work does not predict the existence of a spin
ferromagnet, in contrast to ours, resulting in a very different
physical picture and experimental signatures [55].
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