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Predicting the flow of non-Newtonian fluids in a porous structure is still a challenging issue due to the
interplay between the microscopic disorder and the nonlinear rheology. In this Letter, we study the case of a
yield stress fluid in a two-dimensional structure. Thanks to an efficient optimization algorithm, we show
that the system undergoes a continuous phase transition in the behavior of the flow, controlled by the
applied pressure difference. In analogy with studies of plastic depinning of vortex lattices in high-Tc

superconductors, we characterize the nonlinearity of the flow curve and relate it to the change in the
geometry of the open channels. In particular, close to the transition, a universal scale-free distribution of the
channel length is observed and explained theoretically via a mapping to the Kardar-Parisi-Zhang equation.
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Introduction—Most of the water used for human con-
sumption is stored in underground porous structures, called
aquifers, where it is free to flow if a pressure difference P is
applied. In 1852, H. Darcy [1] showed that the mean flow
rate, Q, namely, the volume of fluid which passes per unit
time measured in a region of size L, is proportional to the
drop P=L: Q ¼ ½ðκ=ηÞðP=LÞ�. Here η is the water viscosity
and κ is the permeability, which depends on the compo-
sition of the porous structure. The permeability can vary
many orders of magnitude: from the quite large values of
fractured rock or gravel to the extremely small permeability
of clay.
Darcy’s law is not restricted to underground water, but is

commonly used for oil, natural gas, and most Newtonian
fluids embedded in a porous structure as long as the mean
flow rate is small enough so that the inertia can be neglected
[2–4]. However, it does not capture the behavior of many
fluids currently injected in rocks for various applications. In
hydraulic fracturing, for example, cracks induced by high-
pressure fluid injection allow the flow of gas and oil [5].
The fracking fluids are emulsions of water and sand or
other proppants needed to keep the paths open. Foams are
used in the enhanced oil recovery to avoid the viscous
fingering instability [6]. Complex fluids are also employed
in soil consolidation by cement injection. All the afore-
mentioned applications involve yield stress fluid, namely,
liquids that are able to flow only above a finite yield stress,
τy. Thus, it is an important question to understand how
yield stress liquids flow in the ground and in general in
porous materials [7–12]. Because of the yield stress
property, flow occurs only above a critical pressure differ-
ence P0. Because of the disorder, recent studies have shown
that above this threshold the flow is characterized by a
phase separation with regions that are easier to flow than

others [11–13]. In this regime, the flow curve is nonlinear
with Q ∝ ðP − P0Þβ with β > 1. At higher pressure,
linearity is recovered and the flow invades homogeneously
in the material.
Interestingly, similar behaviors are observed in other

disordered systems such as vortex lattices in high-Tc
superconductor [14,15], skyrmions [16], or 2D colloidal
crystals [17,18]. There, a plastic depinning is observed
above a critical forcing, with vortices moving in preferen-
tial narrow channels and displaying a nonlinear flux with
the applied force (β > 1). At larger force, a smectic ordered
phase is observed and the flux becomes linear [19]. In all
these systems, a dynamical continuous transition separates
an arrested phase from a flowing one. In these conditions,
universality and divergent correlation lengths are expected
[20], but never proved even though power-law behavior has
been reported in erosion models and experiments [21].
In this Letter, we provide a quantitative description of

yield stress fluids in a stylized two-dimensional porous
material. Introducing a very efficient optimization algo-
rithm, we compute the flow curve of large systems without
approximations and observe three distinct regimes. In
particular, for the plastic flow, we find Q ∝ ðP − P0Þβ
with β ≃ 2. When P → P0, the distribution Pl of channels
of length l becomes scale free: Pl ∝ 1=l. A mapping with
the model of directed polymer in random media allows us
to show that this result is universal and belongs to the
Kardar-Parisi-Zhang (KPZ) universality class [22].
The model.—The full solution of the flow through a

porous medium is computationally costly even for
Newtonian fluids, since it requires to solve the Navier-
Stokes equations coupled with the no-slip condition at the
complex solid interface. A significant simplification is
provided by the pore network models [23] shown in
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Fig. 1. There the material is described by a lattice of large
voids (the pores) connected by narrow cylindric tubes (the
throats) of length l and radius r0. In the pores the pressure is
assumed homogeneous, the flow occurs in the throats where
it can be computed even for a yield stress fluid. In particular
for a Bingham rheology [24], the local flow rate in the throat
connecting the pores i and j writes

qij ¼

8>><
>>:

σijðΔpij − τijÞ if∶ Δpij > τij

0 if∶ jΔpijj < τij

σijðΔpij þ τijÞ if∶ Δpij < −τij

; ð1Þ

with the local pressure difference Δpij ¼ pi − pj. For
cylindric throat of length l and radius r0, according to the
Poiseuille law [25,26], the local hydraulic conductivity
σij ∼ r40=l and the local pressure threshold τij ¼ τyl=r0.
For simplicity,we set l ¼ 1 and r0 random, as a consequence
both local conductivities and thresholds are random.
Equation (1) should be combined with the Kirchhoff’s

conservation of the flow at each node
P

j∈nðiÞ qij ¼ 0,
where the sum runs over the set nðiÞ of neighbors of the
node i. This conservation holds for all nodes except the
inlet node (see Fig. 2 left) where the fluid is injected at
pressure P and the outlet node where the fluid is evacuated
at zero pressure. Given the total pressure difference P and
the configuration of random thresholds and conductivities,
Eq. (1) together with Kirchhoff’s condition is closed, but
very difficult to solve due to the nonlinearity of the flow
rate function of Eq. (1).
To resolve this task, we developed a method based on the

observation that, for a given pressure difference, the flow
occurs only in the set of open throats, named LðPÞ. Once
LðPÞ is known, the solution of the local pressure becomes
linear and can be written as pi ¼ aiPþ bi, where the
coefficients ai, bi depend on LðPÞ and their expressions are
given in the Supplemental Material [27]. The set of open
throats, LðPÞ, is determined iteratively starting from the
minimal pressure P0 needed to open the first channel

connecting the inlet and the outlet pores. P0 is obtained by
minimizing

P0 ¼ min
C∈Cin-out

X
ðijÞ∈C

τij; ð2Þ

where Cin-out represents the set of all paths connecting the
inlet and outlet nodes. The channel C0 corresponds to the
path that realizes the minimum so that LðP0Þ ¼ C0. For
slightly larger pressure, the flow remains restricted to this
channel and thus LðPÞ ¼ LðP0Þ. Increasing the pressure,
LðPÞ is enlarged as new channels will open. The changes of
LðPÞ are the manifestation of the nonlinearity of the
problem and, for a given realization of the thresholds,
occur at precise pressure values P0 < P1 < P2 < … as
shown in Fig. 2. In order to determine Pk, and the
corresponding LðPkÞ, knowing LðPk−1Þ, we should con-
sider the set Ak−1 of all pairs of active nodes belonging to
LðPk−1Þ. For each node pair ðn;mÞ ∈ Ak−1, we consider the
set Cmn of all paths that connect n and m and that avoid any
other intersection with LðPk−1Þ beyond the end points. The
optimal path among Cmn has a threshold

Emn ¼ min
C∈Cmn

X
ðijÞ∈C

τij: ð3Þ

For a given P > Pk−1, if, for all pairs of nodes
ðm; nÞ ∈ Ak−1, the threshold Emn is larger than the corre-
sponding pressure difference ΔpmnðPÞ, then no new
channels appear and LðPÞ ¼ LðPk−1Þ. Expressing pm
and pn in terms of am, bm and an, bn respectively, the
pressure Pk is then determined by

Pk ¼ min
ðm;nÞ∈Ak−1

Emn − ðbm − bnÞ
am − an

: ð4Þ

The minimizations of Eqs. (2) and (3) are performed
using the Dijkstra optimization algorithm [28] which is
quadratic in the path length. In principle, the channel can be
nondirected, i.e., can involve throats where the flow is
upward, but in practice the statistics is dominated by the
directed ones [13,29] and for simplicity we restrict our
analysis to them.
Once the local pressures pi are known, the total flow

Q is given by the outgoing flow from the inlet node. In
particular in our model, the flow curve reads QðPÞ ¼
κkðP − Pk−1Þ=LþQðPk−1Þ if Pk−1 < P < Pk, where κk is
the permeability of the set LðPk−1Þ.
Results.—For the sake of simplicity, here we discuss the

case σij ¼ 1. In Ref. [27], our study is extended to
fluctuating local conductivities and the main results are
shown to be totally universal. The flow curve [Fig. 3(a)]
shows two linear regimes at low and high pressures:
close to P0 the permeability is κ1 ¼ 1 while, at very large
pressure, it converges to the Newtonian value (τij ¼ 0):

FIG. 1. Sketch of porous media. Left: realistic porous medium
in which the solid phase consists of an assembly of grains (in
black). Right: model of a pore network in which large open pores
are connected by straight tubes (throats) with random radii and
unit length.
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κ∞ ∼ πL=ð4 logLÞ (see Ref. [27] for the derivation of this
result and for the numerical evidences) with a total
flow: QðPÞ ¼ ðκ∞P −

P
ij τijÞ=L.

The regime at intermediate pressure is extremely interest-
ing: it is characterized by a complex geometry of open
channels [Fig. 2(c)] andbya nonlinear growth of the flow rate
[Fig. 3(a)]. A power-law behavior emerges with an exponent
β close to 2. The origin of this nonlinearity comes from the
opening of new channels which increases the permeability
[as shown in the inset of Fig. 3(a)]. Indeed, in Fig. 3(b), we
study the sequence of pressure gaps ΔPk ≡ Pk − Pk−1 and
the permeability κk as a function of the number of open paths
k. Independently of the threshold distribution, a clear power-
law behavior is observed and we can conclude that the
number of open paths grows quadratically with P − P0

(i.e., P − P0 ¼
P

k ΔPk ∼
R
dkk−1=2 ∼ k1=2), while the per-

meability κk ≃ k1=2, which impliesQ ¼ 1
L

P
k
k0¼1

κk0ΔPk0 ∼ k
in agreement with β ¼ 2. The value of the exponent seems
then to be independent on the threshold distribution (see also
the Supplemental Material [27]) and is also in agreement
with the one found by solving the full Bingham rheology
problem in realistic porous structures (e.g., random beads

packing [11,13]). This suggests that the macroscopic rheol-
ogymight be universal and that the system approachingP0 is
undergoing a dynamical second-order phase transition. To
assess this idea, we then search for fingerprints of criticality
and scale-free behavior.
In particular, we can provide a deeper understanding on

how the nonlinearity of the flow is approached from small
P. In the inset of Fig. 3(a), we present the flow curve for a
single realization for P≳ P0. The exact linearity terminates
at P ¼ P1 when a second path opens. In this case, Eq. (4)
can be simplified to

P1 ¼ P0 þ L min
ðm;nÞ∈LðP0Þ

�
δEmn

lmn

�
; ð5Þ

where lmn is the distance between m and n and
δEmn ¼ Emn − E0

mn, with E0
mn the threshold along C0

between n and m. The presence of the second path C1

induces a change on the permeability that depends on the
length l of C1. In particular, one has κ2 ¼ ½L=L − ðl=2Þ�.
Note that, depending on the size of the reorganization l, the
permeability can increase up to a factor 2 for l ∼ L.

FIG. 2. The flowing path network at different applied pressures for a system of size L ¼ 100.

FIG. 3. (a) The mean flow curve Q̄ for a given ΔP ¼ P − P0 averaged over more than 200 realizations. The thresholds τij are
uniformly distributed in ½2 − ffiffiffi

3
p

=5; 2þ ffiffiffi
3

p
=5�. Circles and triangles correspond to L ¼ 64 and L ¼ 128, respectively. Inset: the flow

curve of a single realization (L ¼ 50). (b) The averaged pressure increments ΔPk as function of number of open paths k. Inset: the
averaged permeability κk as function of the number of open paths k. Circles, squares, triangles, and crosses correspond to different
system sizes L ¼ 64, 100, 128, 256; blue, red, green correspond to different threshold distributions respectively: uniform, Gaussian,
exponential. (c) The PDF of lengths of the second open paths Pl. Inset: the PDFs of gaps for different system sizes renormalized by their
mean values which follow a clear exponential distribution. ○, □, and △ correspond to different threshold distributions: uniform,
Gaussian, and exponential, respectively.
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Remarkably as shown in Fig. 3, the statistics of the re-
organization size is a power law decaying as PðlÞ ∝ 1=l,
which characterizes a scale-free behavior. We can explain
this result by using a mapping with the directed polymer in
random media and its connection with the KPZ universality
class [22,30,31].
Directed polymers and KPZ.—The minimization prob-

lem in Eq. (2) is equivalent to finding the ground state of a
directed polymer (DP) of length L in ð1þ 1Þd random
medium and the pressure P0 corresponds to its energy [22].
DP is a well-known model that belongs to the KPZ
universality class and the sample-to-sample fluctuations
of the ground state energy have been largely studied in the
literature: they display an anomalous scaling ∝ Lθ where
the exponent θ is characteristic of the KPZ universality
class. In ð1þ 1Þd, not only the exact value θ ¼ 1=3 is
known [22,30,32], but all the fluctuations of the ground
state energy are universal and governed by Tracy-Widom
distribution [33]. The second path that opens at P1 can be
seen as an excited state, on which much less is known. It is
natural to expect that the constraint of avoiding the ground
state along the segment delimited by (n, m) produces a gap
value that grows with the reorganization length lmn.
Scaling arguments suggest that the same exponent θ

controls its scaling, i.e., δEmn ∝ l1=3
mn [34]. If this scaling

form is plugged in Eq. (5), one obtains the saturation of the
typical size of the reorganization l ≃ L and a gap growth
P1 − P0 ∝ L1=3. Note that if in Eq. (5), one takes the factor
1=lmn out of the minimization, the same argument would
lead to a typical reorganization size of l ≃ 1 and to
P1 − P0 ∝ L. The numerical results obtained using our
exact construction totally disagree with these predictions: l
displays a beautiful scale-free behavior [Fig. 3(c)], and
P1 − P0 shrinks to zero logarithmically with the system
size L (see Fig. 5 in Ref. [27]).
This suggests that, while the typical gaps scale as l1=3

mn ,
those which realize the minimum in Eq. (5) are the results
of rare paths. These rare, almost vanishing, gaps are the
ones that determine P1. To be more quantitative, we study
in Ref. [27] (see also references in there [35–38]) the full
PDF of δEmn [denoted by ρlmn

ðδEmnÞ� and show that

ρlmn
ðδEmn → 0Þ ∼ 1

lmn
; ð6Þ

(see Fig. 7 of Ref. [27]) [39]. Note that this result is not only
a numerical observation, but it is the consequence of an
exact result: the probability to find almost degenerate self-
avoiding ground states is inversely proportional to the
polymer length [36,37].
We can prove the main results of the gap and length

statistics of the second path in two steps.
First step: Consider all pairs of node (m, n) with a given

distance lmn ¼ l and select the excitation with the minimal
cost among them: δel ¼ minlmn¼lδEmn. Note that δel is

the minimum among L − l random variables that are
identically distributed but display strong correlations, as
the ground states of close pairs [e.g., ðn; nþ lÞ and
ðnþ 1; nþ lþ 1Þ] have large overlaps. It is reasonable
to assume that the effective number of independent vari-
ables scales as the number of nonoverlapping blocks
Nl ¼ L=l and the statistics of δel is the minimum among
them. From Eq. (6), for large Nl, we have

Proba½δel > x� ¼
�
1 −

Z
x

0

dðδEÞρlðδEÞ
�
Nl

≈ exp

�
−Nl

Z
x

0

dðδEÞρlðδEÞ
�

≈ exp

�
−
Nl

l
x

�
: ð7Þ

Second step: To have access to ΔP1, we take into account
all lengths l ¼ 2; 3…L to minimize the energy cost per
length.

ΔP1

L
¼ minl

δel
l

ð8Þ

Hence, using Eq. (7), we have

Proba

�
ΔP1

L
> x

�
¼

YL
l¼2

Proba

�
δel
l

> x

�

≈
YL
l¼2

expð−NlxÞ

¼ exp

�
−
�XL

l¼2

Nl

�
x

�
ð9Þ

Thus, the gap ΔP1=L is also exponentially distributed
as shown in the inset of Fig. 3(c). Its mean,
ΔP1=L ¼ ðPl NlÞ−1 ∼ 1=½L logðL=2Þ�, is in agreement
with the numerical results reported in Ref. [27] [see
Fig. 5(b) therein]. Moreover, discarding the factor 1=lmn
in the minimization of Eq. (8), one recovers the mean
½PlðNl=lÞ�−1 ∼ L−1 reported in Ref. [27].
Finally, to compute the statistics of the size of the second

path Pl, it is useful to introduce ωl ¼ δel=l, take the
derivative of Eq. (7) and obtain the PDF of ωl

plðωlÞ ≈ Nl exp ð−NlωlÞ; ð10Þ

then the probability Pl writes

Pl ¼
Z

dωlplðωlÞ
Y
l0≠l

Z
∞

ωl

pl0 ðωl0 Þ ∼ l−1; ð11Þ

which is coherent with our observations for all types
of distributions of thresholds shown by the red curves in
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Fig. 3(c). Similarly, if one discards the factor 1=l in the
minimization, one obtains the length distribution scales as
l−2 [Fig. 3 in Ref. [27]].
Conclusions.—In this Letter, we have studied the non-

linearity of the Darcy’s law for a yield stress fluid in a 2D
porous material. We have shown that the onset of flow is
associated to a plastic depinning transition. In this context,
power-law behaviors have been found [21] but here, we
clearly identify a divergent scale in the length of the new
channels. Our results are independent of the threshold
distributions suggesting that in 2D geometry our main
predictions β ≈ 2 and Pl ∼ l−1 should be experimentally
observed. It would be interesting to study the fractal
properties of the flowing region (exact results have been
obtained for the geometry of the branching paths of the first
passage percolation model relevant for delta rivers [40] and
animal trails [41]) and connect them to the value of the
exponent β.
We expect the method developed here to be generalizable

to 3D where the value of β is not known, but the statistics of
Pl will once again depend only on the scaling behavior
of ρlðδE → 0Þ.
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