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We report the formation of magnetic eigenstates assisted by naturally occurring particle dissipation in a
Bose-Einstein condensate of spin-2 87Rb atoms. Although the atomic interaction energetically favors the
nonferromagnetic state, we observed the spontaneous evolution of an unpolarized spin state into the
transverse ferromagnetic state. Under such dynamics, the spin-dependent dissipation of atoms enhances the
synchronization of the relative phases among five magnetic sublevels to promote magnetization. Through
numerical simulations based on mean-field theory, we show that another exotic magnetic eigenstate, the
cyclic state, can also be formed through the spin-dependent dissipation of atoms.
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Clarifying the various effects of energy and particle
dissipation coupling to the environment will lead to a
deeper understanding of open quantum systems and will
expand the applications of quantum physics. Dissipation
often reduces the quantum coherence, which is a major
problem in quantum information science, such as quantum
computation and quantum simulation [1]. On the other
hand, dissipation sometimes has the opposite effect of
promoting quantum coherence, and such dissipation can be
used as a new control strategy for quantum systems and as a
useful resource for quantum computations [2]. Through
proper design of the coupling between the system and the
surrounding environment, it is possible to prepare a
desirable pure quantum state in an open quantum system
to explore quantum simulation using strongly correlated
many body states [3]. The stabilization of entangled qubits
in superconductor and atomic ions [4,5] and the control of
quantum phase transitions in cold atoms [6] have been
experimentally demonstrated by exploiting controllable
dissipation.
Beneficial effects of dissipation are also caused by

uncontrollable naturally occurring dissipation. Natural
dissipation has been used to protect quantum states in
optical applications. Optical loss maintains a coherent state
or brings other states closer to a coherent state [7]. Under
such energy dissipation, photons are lost, but the phases
between the photon-number bases are not randomized,
enabling the transmission of light while maintaining the
phase of the complex amplitude of the light field. Recently,
prolonging the coherence time under natural dissipation has
been discussed in biological systems to understand efficient
processes in nature [8]. In photosynthetic systems, such an
effect is related to efficient electron transport [9,10].

In this Letter, we investigate the magnetization dynamics
in dissipative Bose-Einstein condensates (BECs) of spin-2
(hyperfine spin F ¼ 2) 87Rb atoms. We experimentally
observed the emergence of symmetry-breaking magneti-
zation from an unpolarized spin state. Symmetry-breaking
magnetization has been observed in a spin-1 87Rb BEC
[11], in which the magnetization is induced by the
ferromagnetic interactions between atoms. In contrast, in
a spin-2 87Rb BEC [12], although the corresponding
interactions are not ferromagnetic, the unpolarized spin
state evolves into a transverse ferromagnetic state.
We found from the comparison of experimental and

theoretical results that spin-dependent particle dissipation
plays an essential role in the formation of a ferromagnetic
state. In this system, the F ¼ 2 state of 87Rb atoms
undergoes inelastic collisional loss, in which two F ¼ 2
atoms collide and escape from the trap by a transition from
the F ¼ 2 state to the F ¼ 1 states [13]. Although the total
spin F of the two colliding F ¼ 2 atoms can be F ¼ 4, 2,
or 0, decay through the F ¼ 4 channel is prohibited by
angular-momentum conservation, since the F ¼ 1 state
cannot participate in the F ¼ 4 channel. In other words,
inelastic collisional loss of two atoms is suppressed when
they are fully magnetized in the same direction. As a
consequence, the magnetized state accumulates and is
purified in the trap by the dissipation of other states.
This magnetization dynamics is in stark contrast to
the conventional dynamics, in which the spin vectors
align in the same direction to lower the interaction
energy [11].
A schematic of the observed spinor dynamics is illus-

trated in Fig. 1. We performed the experiments using a
spin-2 BEC consisting of the five magnetic sublevels,
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m ¼ −2;−1; 0;þ1, and þ2. The magnetization, Si, along
the i axis was obtained from the population in each
magnetic sublevel, ρm;i, with the i axis as the quantization
axis (Si ¼ Σmmρm;i). The atoms were initially prepared in
the jF ¼ 2; m ¼ 0i state with the quantization axis along a
magnetic bias field on the z axis. This state is the
completely unpolarized spin state with rotational symmetry
around the z axis [Fig. 1(a)]. After time evolution, the
atoms were distributed into all m components by two-body
elastic collisions while preserving a longitudinal magneti-
zation Sz of zero. Similar dynamics of ρm;z have previously
been investigated experimentally [14–16]. The most sig-
nificant difference from the previous studies is that we also
measured the transverse magnetization, S⊥ ¼ S cos α,
orthogonal to the z axis, making it possible to obtain

information on the phase coherence, where S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2x þ S2y

q
is the magnitude of the transverse magnetization and α is
the azimuth angle of the spin vector. We found that the
transverse magnetization is almost fully polarized, S ≃ 2,
after time evolution. Transversely fully polarized state
rotating on the x–y plane is expressed by the two-axis
rotation of the longitudinally fully polarized state as
follows:
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where the operator R̂iðθÞ rotates the spin state around the i
axis by an angle θ. In such state, the phases in the magnetic
sublevels, Φm, satisfy Φ2 −Φ1 ¼ Φ1 −Φ0 ¼ Φ0 −Φ−1 ¼
Φ−1 −Φ−2. Therefore, the generation of the transverse
magnetization with S ≃ 2 implies the formation of phase
coherence. The atoms distributed in the five m components
therefore acquire phase correlation, and the phases rotate
with the Zeeman frequency synchronously [Fig. 1(b)]. On
the other hand, phase synchronization does not occur in a
numerical simulation without dissipation [Fig. 1(c)]; thus, it
can be concluded that the phase synchronization is due to
dissipation.
We used a BEC trapped in a crossed far-off-resonance

optical trap (FORT). The axial and radial frequencies of
the FORT are ωz=ð2πÞ ¼ 64 Hz and ωr=ð2πÞ ¼ 190 Hz,
respectively. The external magnetic field of Bz ¼ 200 mG
is aligned with the axis of the trap (z direction), which
produces a quadratic Zeeman shift, jqj=h ≃ 3 Hz. The pure
j2; 0i state is produced from the state occupying the
multiple m levels by using microwave pulses and a blasted
beam (see the Supplemental Material [17]). The purity of
the j2; 0i state in this study was greatly enhanced relative to
that in our previous experiment [16] to remove other
components. The BEC prepared in the j2; 0i state was
then held in the optical trap for a variable time of Thold. To
measure Sz, the BEC was released from the trap, and each
m component was spatially separated along the z direction
using the Stern-Gerlach method. On the other hand, to
measure S⊥ orthogonal to the z direction, we irradiated the
BEC with a π=2 radio frequency (rf) pulse just before
releasing it from the trap. The π=2 rf pulse effectively
rotated the measurement axis by π=2. After a time of flight
for 15 ms, the spatial distribution of eachm component was
measured using absorption imaging. The number of atoms
in each m component was estimated by performing the
bimodal fitting of the atomic distribution. The longitudinal
or transverse magnetization per atom, Si, was calculated
from ρm;i.
We first experimentally investigate the spinor dynamics

along the longitudinal axis (z axis). Figure 2(a) shows the
dependence of ρm;z on the free-evolution time, Thold. The
m ¼ �1 components grow after Thold ≃ 30 ms, followed
by a delayed growth in the m ¼ �2 components after
Thold ≃ 50 ms. The initial slow rise of the m ¼ �1 com-
ponents in Fig. 2(a) reflects the metastability of the m ¼ 0
state [14,23]. Indeed, in the case where the initial state
includes components other than the m ¼ 0 state, the initial
change is faster (see the Supplemental Material [17]). The
longitudinal magnetization, Sz, calculated from the results

BEC

(b) With dissipation

sin
m

(a) Initial state 

(c) Without dissipation

sin
m

FIG. 1. Conceptual diagram of coherence formation assisted
by spin-dependent particle dissipation. (a) The as-prepared
unpolarized spin state of jF ¼ 2; m ¼ 0i, where F and m are
the quantum numbers for the total angular momentum and the
Zeeman sublevel, respectively. The populations in the j2; mi
states are depicted in the gray box. (b),(c) show the spin
states after time evolution with and without dissipation,
respectively. The sinusoidal curves represent the phases
sinΦm ¼ sin ðmωtþ ϕmÞ, where ω is the linear Zeeman fre-
quency under a magnetic field in the z direction. The phase offset,
ϕm, is expressed by different colors. The atoms populate all five
components in both (b) and (c). The fully polarized transverse
magnetization is generated only in a dissipative system, namely
Φm obeys the relationship Φ2−Φ1¼Φ1−Φ0¼���¼Φ−1−Φ−2
due to the dissipation.
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shown in Fig. 2(a) remains almost stable around zero, as
shown in Fig. 2(b). As shown in the inset of Fig. 2(a), the
total number of atoms is reduced, mainly due to spin-
dependent particle dissipation by inelastic collisional loss.
The degree of loss by other processes such as photon
scattering from the dipole trap was estimated using the
j2;−2i state, which is immune to inelastic collisional loss
[24]. In this case, the total loss of atoms at Thold ¼ 150 ms
is less than 10%.

We next investigate the dynamics of S⊥. As for the
dynamics measured along the z axis, no change is seen up
to Thold ≃ 30 ms. However, unlike for the dynamics of ρm;z,
the shot-to-shot variations in ρm;⊥ for each Thold greatly
increase after Thold ≃ 30 ms, which results in S⊥ varying
between −2 and þ2, as shown in Fig. 2(c). We now
consider the cause of the shot-to-shot variations in S⊥
observed in Fig. 2(c). Since the initial m ¼ 0 state has
rotational symmetry around the z axis, the occurrence of
transverse magnetization should be a consequence of
spontaneous breaking of the rotational symmetry.
Therefore, the azimuth angle of the spin vector, α, becomes
random for each measurement, resulting in variation of
S⊥ ¼ S cos α. The change of α corresponds to adding the
phase −mα to each Φm. In addition, α fluctuates due to the
temporal fluctuation of the magnetic bias field.
We evaluate the magnitude of S that best fits the 60

experimental data points of jS⊥j obtained during Thold ¼
120–150 ms in Fig. 2(c). When S reaches a certain
value and assuming α is random and uniform over
½0; 2π�, the probability distribution of jS⊥j is represented
by pðjS⊥jÞ ∝ ðS2 − jS⊥j2Þ−1=2, where 0 ≤ jS⊥j ≤ S. The
red outline histogram in Fig. 2(d) shows pðjS⊥jÞ integrated
within the bin width for S ¼ 1.9.
We perform three-dimensional numerical simulations of

the Gross-Pitaevskii (GP) equation (see the Supplemental
Material [17]). Figure 3 shows a typical example of the time
evolution of the transverse magnetization S. Magnetization
is never produced under a condition of zero magnetic field,
corresponding to the green curve in Fig. 3. When the
quadratic Zeeman energy is included, as shown by the red
curve, the magnetization initially grows but then decreases.
The magnitude of the magnetization is limited to no more
than S ≃ 1, and thus this result disagrees with the exper-
imental findings. The initial growth in the magnetization is
due to the combined effect of the s-wave spin-exchange
interaction and the quadratic Zeeman effect. The energies
of the m ¼ �1 and m ¼ �2 states are lowered by the
quadratic Zeeman energy qm2ðq < 0Þ, and the transitions

(a)

(b)

(c)

(d)

Values estimated  from S=1.9

FIG. 2. Observation of the spinor dynamics starting from an
unpolarized spin state j2; 0i. (a) Time evolution of the popula-
tions ρm;z in the magnetic sublevels m. The inset shows the total
number of atoms. (b) Dynamics of the longitudinal magnetiza-
tion, Sz. (c) Dynamics of the transverse magnetization, S⊥.
(d) Normalized occurrence distribution of jS⊥j obtained during
Thold ¼ 120–150 ms. The histogram with a bin width of 0.2 was
constructed from 60 experimental data points in (c), and the red
empty histogram indicates the fitting result.

FIG. 3. Evolution of the magnetization from numerical simu-
lation. The blue and red curves are obtained by solving the 3D GP
equation with and without the dissipation of atoms, respectively.
In the green curve, the quadratic Zeeman effect is excluded.
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from the m ¼ 0 state to these states are enhanced. The
quadratic Zeeman effect also rotates Φm by ðqm2=ℏÞt,
which results in temporal modulation of S. Thus, the
quadratic Zeeman effect produces magnetization, but never
synchronizes the phase Φm to enhance the magnetization.
Next we solve the GP equation by taking into account

spin-dependent particle dissipation. As shown in the blue
curve in Fig. 3, the increase in the magnetization up to
Thold ≃ 60 ms is similar to that for the case without particle
dissipation. Unlike the nondissipative system, the magneti-
zation in the dissipative system continues to increase,
which is in qualitative agreement with the experimental
result in Fig. 2. This result indicates that the growth of
magnetization after Thold ≃ 60 ms is driven mainly by the
spin-dependent dissipation. However, the blue curve in
Fig. 3 does not reach the values of S ≃ 1.9 obtained in
Fig. 2(d), which may be due to effects not taken into
account in the simulations, such as thermal effects [25].
The growth of magnetization by particle dissipation is

described by the spin-dependent part of the energy

Espin ¼
Z

dr

�
g4−g2
14

s · sþ7g0−10g2þ3g4
14

jA0j2
�
; ð1Þ

where gF is the interaction coefficient for the colliding
channels of total spins F ¼ 4, 2, and 0; s is the magneti-
zation density; and jA0j is the spin-singlet density. The
spin-dependent particle dissipation is expressed by the
nonpositive imaginary part of the interaction coefficient
gF [13]. The imaginary part of the first term represents the
relative enhancement or suppression of the magnetization,
depending on its sign. As mentioned above, decay through
the F ¼ 4 channel is prohibited (Img4 ¼ 0) and the
imaginary part of the coefficient of s · s is always non-
negative, which enhances jsj relative to the total density.
The magnetized state is thus more likely to survive than any
other state under spin-dependent particle dissipation, which
leads to the formation of the ferromagnetic eigenstate. In
other words, spin-dependent dissipation assists the syn-
chronization of Φm to promote the transverse magnetiza-
tion. This is quite different from the phase decoherence
due to the dissipative environment; the present effect of
dissipation protects the specific eigenstate.
From the form of Eq. (1), we find that the singlet-pair

density jA0j is also enhanced or suppressed by the spin-
dependent particle dissipation, which suggests that other
magnetic eigenstates can emerge depending on the values
of Im gF . One such eigenstate is the cyclic state, which is a
BEC of singlet trios of spin-2 atoms [12,26–28]. The cyclic
state emerges when the singlet-pair density jA0j and
the magnetization jsj are both suppressed. As mentioned
above, the imaginary part of g4 − g2 in Eq. (1) is always
non-negative, which causes jsj to increase. However, if jA0j
decreases before jsj grows, the cyclic state can be formed.
This is achieved when jImg0j is large and jImg2j is small.

Figure 4 shows the time evolution of jsj and jA0j for such a
case for Img0 and Img2. The initial state is R̂xðπ=2Þj2; 0i.
The blue curve in Fig. 4 shows that jA0j decays to almost
zero in the presence of particle dissipation while jsj remains
small, indicating that the cyclic state is formed. The
spherical harmonic representations of the spin states also
show that the initial polar state evolves into the cyclic state,
as shown in the inset of Fig. 4. It is notable that such
tetrahedral symmetry arises from particle dissipation. Both
the initial state and the cyclic state have populations in
the m ¼ 0 and m ¼ �2 states, with relative phases of
ϕ2 þ ϕ−2 − 2ϕ0 ¼ 0 for the initial state and π for the cyclic
state. Thus the spin-dependent particle dissipation also
affects the phases Φm in the generation of the cyclic state.
We have experimentally and theoretically investigated

the role of dissipation in a BEC of spin-2 87Rb atoms and
found that particle dissipation can give rise to quantum
coherence. Although the interactions between the atomic
spins are not ferromagnetic, we nonetheless observed
the emergence of transverse magnetization, in which the
relative phases among the five magnetic sublevels are
synchronized. Numerical simulations revealed that this
phenomenon is mainly due to spin-dependent particle
dissipation. It has also been shown that with appropriate
loss parameters, such dissipation can lead to the formation
of a cyclic magnetic state. These results indicate that
naturally occurring dissipation gives rise to robustness of
quantum coherence.
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FIG. 4. Formation of the cyclic state (magnetic eigenstate).
Numerical simulation of the time evolution of jA0j and jsj, when
Img0 and Img2 are 10 times and one-tenth their values for 87Rb,
respectively. The initial spin state is R̂xðπ=2Þj2; 0i. The size of the
magnetic field, Bz, is 50 mG. The spherical harmonic represen-
tations of the spin states at the center of the condensate are shown
in the insets (see the Supplemental Material [17]).
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