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We use the scattering matrix formalism to analyze photon blockade in coherently driven cavity quantum
electrodynamics systems with a weak drive. By approximating the weak coherent drive by an input single-
and two-photon Fock state, we reduce the computational complexity of the transmission and the two-
photon correlation function from exponential to polynomial in the number of emitters. This enables us to
easily analyze cavity-based systems containing ∼50 quantum emitters with modest computational
resources. Using this approach we study the coherence statistics of photon blockade while increasing
the number of emitters for resonant and detuned multiemitter cavity quantum electrodynamics systems—
we find that increasing the number of emitters worsens photon blockade in resonant systems, and improves
it in detuned systems. We also analyze the impact of inhomogeneous broadening in the emitter frequencies
on the photon blockade through this system.
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Introduction.—Cavity quantum electrodynamics (CQED)
is a fundamental model of light and matter which has been
experimentally implemented in a variety of physical plat-
forms.Atomic and solid stateCQEDsystemswith a few two-
level emitters have exhibited a rich set of quantum phenom-
ena in transmission statistics, including, but not limited to, the
vacuum Rabi oscillations [1,2], the conventional and the
unconventional photon blockade [3–5], and the photon-
induced tunneling [6]. While suitable approximations can
provide an understanding of the eigenstructure of multiele-
ment CQED systems [7,8] obtained in experiments [9,10],
the numerical studies of light emission and scattering from
this system have been limited due to the exponential scaling
of the Hilbert space with the number of emitters.
The scattering matrix formalism for quantum-optical

systems provides the solution to this problem. Recently, a
general formalism for computing this scattering matrix
for an arbitrary time-independent and time-dependent
Markovian quantum-optical system was developed
[11,12], reducing its computation to that of an effective
propagator for the quantum-optical system. Use of the
scattering matrices allows relating the transmission and
two-photon correlation through a system to the single- and
two-photon scattering matrix whose computation time
scales as ∼OðN3Þ and ∼OðN6Þ, respectively, in the number
of emitters N.
In this Letter, we use the scattering matrix formalism to

study multiemitter CQED systems with a large number of
emitters (N ∼ 50) driven by weak continuous-wave
classical light (e.g., a laser). We show that increasing the
number of emitters does not increase the depth of the
photon blockade in resonant multiemitter CQED systems
with identical emitters. However, find that increasing the

number of emitters improves photon blockade if the
emitters are detuned from the cavity resonance. Finally,
we study the impact of inhomogeneous broadening [13–19]
in the emitter frequencies on photon blockade in the
multiemitter systems.
Simulation method.—A schematic of the considered

system is shown in Fig. 1—a cavity, with annihilation
operator a, is coupled to N two-level emitters, with low-
ering operators σi, 1 ≤ i ≤ N. The cavity is excited through
a waveguide, with a frequency-dependent annihilation
operator bω, and the emission from the cavity is collected
through another waveguide, with annihilation operator cω.
The emitters, in addition to coupling to the cavity mode,
also radiate into loss channels with annihilation operators

lðiÞω —these loss channels model the linewidths of the

FIG. 1. Schematic of the multiemitter CQED system. An
optical cavity mode couples to N emitters with coupling con-
stants gi, 1 ≤ i ≤ N. The input and output coupling constants are
κb and κc. In addition to the cavity, the emitters also couple to loss
channels with coupling constants γi. The total decay rate of the
cavity is given by κ ¼ κb þ κc (we assume κb ¼ κc ¼ κ=2
throughout this Letter).
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emitters. The Hamiltonian for the multiemitter CQED
system is given by

Hsys ¼ ωca†aþ
XN

i¼1

½ωiσ
†
i σi þ giðaσ†i þ σia†Þ�; ð1Þ

where ωc is the cavity resonance frequency, ωi is the
transition frequency of the ith emitter, and gi is the coupling
constant between the ith emitter and the cavity mode. We
study the excitation of this system with a continuous-wave
coherent state at frequency ωL, described by an input state:

jψ ini ¼ exp½β0ðb†ωL − bωL
Þ�jvaci; ð2Þ

where β20 is the photon flux (number of photons per unit
time) in the coherent state. As is detailed in the
Supplemental Material [20], we establish the following-
relationship of the transmission TðωLÞ and two-photon
correlation gð2Þðt1; t2;ωLÞ to the single-photon ½Scð·Þ� and
two-photon ½Sc;cð·Þ� scattering matrices for continuous-
wave input in the limit of small input photon flux β20:

TðωLÞ ¼
����
Z

∞

t0¼−∞
Scðt; t0Þ expð−iωLt0Þdt0

����
2

ð3aÞ

gð2Þðt1; t2;ωLÞ ¼
1

4T2ðωLÞ
×

����
Z

∞

t0
1
;t0
2
¼−∞

Sc;cðt1; t2; t01; t02Þ exp½−iωLðt01 þ t02Þ�dt01dt02
����
2

; ð3bÞ

where the S matrices capture scattering of photons propa-
gating in the input waveguide (with annihilation operator
bω) to the output waveguide (with annihilation operator cω).
The scattering matrices are functions only of the system
operators and external coupling constants κb;c and γn.
The dominant cost for computing these scattering matri-

ces is that of diagonalizing the effective Hamiltonian
Heff [20]:

Heff ¼ Hsys −
iκ
2
a†a −

XN

n¼1

iγn
2

σ†nσn; ð4Þ

where κ ¼ κb þ κc is the total decay rate for the optical
cavity. Since Heff conserves the total excitation number
ða†aþP

N
n¼1 σ

†
nσnÞ, this diagonalization can be performed

separately within the excitation conserving subspaces of the
full Hilbert space. When computing the single- and two-
photon scattering matrices, it is only necessary to diago-
nalize the effective Hamiltonian within the single- and
two-excitation subspaces the cost of which is ∼OðN3Þ
and ∼OðN6Þ, respectively. We note that when the emitters
are identical (i.e., ωi ¼ ω, γi ¼ γ, and gi ¼ g for all
i ∈ f1; 2;…; Ng), by utilizing the Clebsch-Gordan series
this diagonalization can bemapped to the diagonalization of
3 × 3 and 2 × 2 complex matrices [20].
Having diagonalized Heff , the transmission TðωLÞ and

equal-time two-photon correlation gð2Þð0;ωLÞ¼gð2Þðt;t;ωLÞ
can be expressed as [20]

TðωLÞ ¼ κbκc

����
XN 1

i¼1

ðhGjajϕð1Þ
i iTÞ2

λð1Þi − ωL

����
2

; ð5aÞ

gð2Þð0;ωLÞ ¼
����
XN 2

i¼1

ΓiðωLÞ
����
2

; ð5bÞ

where jGi is the ground state of the multiemitter CQED
system, h·iT denotes a “transpose” inner product between two
states,N i is the dimensionality of the ith excitation subspace

of the multiemitter CQED system, ðλðiÞj ; jϕðiÞ
j iÞ are the

eigenvalues and eigenstates of Heff within the ith excitation
subspace and ΓiðωLÞ, given below, can be interpreted as the
contribution of the ith two-excitation eigenstate to the equal-
time two-photon emission:

ΓiðωLÞ ¼
κbκc
TðωLÞ

�hGja2jϕð2Þ
i iT

λð2Þi − 2ωL

�

×
XN 1

j¼1

�hϕð2Þ
i ja†jϕð1Þ

j iThϕð1Þ
j ja†jGiT

λð1Þj − ωL

�
: ð6Þ

These expressions for TðωLÞ and gð2Þð0;ωLÞ explicitly show
their dependence on the energy eigenvalues [∼ReðλðjÞi Þ],
linewidths [∼ImðλðjÞi Þ], as well as the eigenstates (jϕðiÞ

j i) of
the multiemitter CQED systems.
Results.—Using a large number of identical emitters

coupling coherently to the same cavity mode is a potential
strategy to achieve strong coupling between the emitters
and the cavity in a situation where an individual emitter
only weakly couples to the cavity mode. Figures 2(a)–2(b)
show the transmissivity TðωLÞ and equal-time correlation
gð2Þð0;ωLÞ for multiemitter CQED systems with 1–100
emitters. Consistent with the result obtained on a direct
diagonalization of Hsys, we observe that the splitting
between the polaritonic peaks in the transmissivity scales
as

ffiffiffiffi
N

p
. We also observe that the minimum two-photon

correlation gð2Þð0;ωLÞ, which is achieved at the polaritonic
frequencies, tends towards unity with an increase in the
number of emitters for both strongly coupled emitters
[Fig. 2(a)] and weakly coupled emitters [Fig. 2(b)]. This
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trend can be easily explained by looking closely at the
“anharmonicity” (δω1;2) between the single- and two-
excitation eigenenergies of the multiemitter CQED system:

Δω1;2 ¼ min
i;j

jRe½2λð1Þi � − Re½λð2Þj �j: ð7Þ

Figure 3(a) shows Δω1;2 as a function of N along with the

linewidth δω2 ¼ Im½2λð2Þi � of the most harmonic eigenstate
in the two-excitation subspace—increasing the number of
emitters makes the system’s energy levels more equally
spaced while saturating their linewidths, thereby worsening
photon blockade. It is worth noting that with the weakly
coupled emitters the value of the min½gð2Þð0;ωLÞ� has an
initial decrease, before monotonically increasing with the
number of emitters consistent with previously reported
results [8]. We also observe a pronounced “bunching” peak
in gð2Þð0;ωLÞ for strongly coupled emitters [Fig. 2(a)], near
the antibunching dip—this corresponds to 2ωL being
resonant with the two-excitation eigenstates. gð2Þð0;ωLÞ
at the bunching peak also tends to 1 as N → ∞ due to the
system eigenstates becoming increasingly harmonic.
Moreover, gð2Þð0;ωLÞ can be analytically evaluated in
the limit of N → ∞ to obtain [20]

lim
N→∞

gð2Þð0;ωLÞ ¼
����1 −

g2

ðωL − λeÞð2ωL − λe − λcÞ
����
2

; ð8Þ

where λe ¼ ωe − iγ=2 and λc ¼ ωc − iκ=2. As can be seen
from Figs. 2(a) and 2(b), in the limit of large number of
emitters, the multiemitter system does not show any
blockade—photon bunching can be seen at ωL ∼ ωc as a
consequence of near zero single-photon transmission.
We next study the impact of detuning between the

emitters and the optical mode on the polaritonic photon
blockade [Fig. 2(c)]. Consider the transmission line shape:

there is a distinct Fano dip to nearly zero transmission at
ωL ≈ ωe where the single-photon transmission through the
two single-excitation eigenstates (one being more cavity-
like and the other being more emitterlike) exactly cancels.
Towards the right of this Fano dip, the light antibunches
[gð2Þð0;ωLÞ < 1] owing to the standard polaritonic photon
blockade of a detuned system [25,26]. Because of the
multiemitter system becoming more harmonic with an
increase in the number of emitters [Fig. 3(a)], this blockade
effect degrades similar to that in the resonant CQED
system. Photon bunching [gð2Þð0;ωLÞ > 1] is observed
exactly at the Fano dip due to the single-photon trans-
mission becoming nearly zero—within the framework of
scattering theory, this is equivalent to the contribution of the
unconnected (linear or frequency preserving) part of the
scattering matrix being small in the output state, and the
scattering happening almost entirely from the connected
(nonlinear or frequency mixing) part of the two-photon S
matrix [27].
Slightly left of the Fano dip, we again observe photon

antibunching—moreover, unlike polaritonic blockade, the
blockade depth increases with increasing N. This blockade
occurs due to a destructive interference between the two-
photon emissions from different two-excitation eigenstates.
More insight into this phenomenon can be obtained by
closely studying the two-excitation eigenstates as well as
their contribution to two-photon emission. Note from
Eqs. (5b) and (6) that only the two-excitation eigenstates
which have nonzero overlap with two photons in the cavity

(i.e., hGja2jϕð2Þ
i i ≠ 0) have a nonzero contribution to

gð2Þð0Þ. When all the emitters are identical, there are three

such two-excitation eigenstates—jϕð2Þ
� i which have a

probability of 1=4 of having two photons in the cavity

in the limit of N → ∞, and jϕð2Þ
0 i which when N → ∞ has

a probability of 1=2 of having two photons in the cavity
[20]. Figures 3(b)–3(c) show the amplitude and phase of the

(a) (b) (c)

FIG. 2. Equal-time correlation gð2Þð0;ωLÞ and transmissivity TðωLÞ for (a) strongly coupled resonant emitters (g ¼ 2κ;ωe ¼ ωc),
(b) weakly coupled resonant emitters (g ¼ 0.2κ;ωe ¼ ωc), and (c) weakly coupled detuned emitters (g ¼ 0.2κ;ωe − ωc ¼ 0.8κ). The
insets show the dependence of minωL

½gð2Þð0;ωLÞ� as a function of N and the dashed lines show limN→∞gð2Þð0;ωLÞ computed using
Eq. (8). Increasing the number of emitters clearly deteriorates the polaritonic photon blockade observed in the system. For detuned
systems, increasing the number of emitters enhances the interference-based blockade. γ ¼ 0.01κ is assumed in all simulations.
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contribution of these three eigenstates to equal-time two-
photon emission [i.e., ΓiðωLÞ defined by Eq. (6)] at the
blockade frequency—it can easily be seen that individually
the eigenstates have significant two-photon emission, with
the amplitude of emission being proportional to the
probability of the eigenstate having two photons in the
cavity mode. However, the two-photon emission from

jϕð2Þ
0 i is out of phase from the emission of jϕð2Þ

� i, with
the phase difference between them approaching π as the

number of emitters increases. This explains the interfer-
ence-based character of this blockade, as well as its
dependence on N. The limit of gð2Þð0;ωLÞ as N → ∞,
given by Eq. (8) and plotted in Fig. 2(c), also shows a
pronounced interference-based antibunching, along with a
disappearance of the polaritonic blockade. Moreover, the
interference-based blockade can be made deeper by
increasing the detuning between the emitters and the cavity
mode [20]. We also note that the transmission TðωLÞ at the

(a) (b) (c)

FIG. 3. (a) AnharmonicityΔω1;2 and the linewidth δω2 of the most harmonic eigenstate in the second excitation subspace as a function
of number of emitters. We have used g ¼ 2κ and only considered those two-excitation eigenstates which have a nonzero overlap with
two photons in the cavity while computing Δω1;2 and δω2. (b) Amplitude and phase of the equal-time two-photon emission (Γ�;Γ0)

from the three eigenstates (jϕð2Þ
� i, jϕð2Þ

0 i) that contribute to gð2Þð0;ωLÞ in a detuned multiemitter CQED system with weakly coupled
emitters (g ¼ 0.2κ, ωe − ωc ¼ 0.8κ) at the frequency corresponding to the interference-based blockade. γ ¼ 0.01κ is assumed in all
simulations.

(a)

(b)

FIG. 4. Impact of inhomogeneous broadening on the photon blockade in multiemitter CQED systems for (a) the emitters, on an
average, being resonant with the cavity. (b) emitters that are, on an average, detuned from the cavity resonance by
hωei − ωc ¼ 0.8κ ¼ 2π × 20 GHz. For both cases, we show a typical line shape gð2Þð0;ωLÞ, and the statistics of the frequencies
ωB and the gð2Þð0;ωBÞ values for the polaritonic and subradiant photon blockade (note that the y axis in the histogram is the
unnormalized frequency of occurrence of the sample statistic). Parameter values Δ ¼ 25 GHz, κ ¼ 2π × 25 GHz,
g ¼ 0.2κ ¼ 2π × 5 GHz, and γ ¼ 2π × 0.3 GHz are assumed in all simulations.
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interference-based photon blockade is small—it scales in
inverse proportion to N2 [20]—there thus exists a trade-off
between the purity of the single-photon state emitted by
these systems and the brightness of the single-photon state.
While the previous analysis was primarily done under the

assumption of identical emitters, emitters in practical sys-
tems are inhomogeneously broadened; i.e., they have
slightly different transition frequencies. For solid-state color
centers, the distribution of the emitter frequencies can be
modeled as a normal distribution with standard deviation
Δ≲ 20 GHz [16,18,19]. Results of a Monte Carlo analysis
on the transmission and equal-time two-photon correlation
through the multiemitter system are shown in Fig. 4(a) for
resonant emitters and Fig. 4(b) for detuned emitters. We
observe an emergence of a large number of very narrow
linewidth dips in gð2Þð0;ωLÞ which correspond to the
subradiant photon blockade that has been studied in
CQED systems with two nonidentical emitters [28]. The
occurrence of these dips is due to subradiant states. These
highly entangled states that did not overlap with the cavity
modewhen the emitters were identical, now do overlap with
the cavity mode and hence contribute to light emission from
the system. These blockades reach very low gð2Þð0;ωLÞ
values even for emitters that individually couple to the cavity
only weakly. Moreover, for the resonant system, the dis-
tribution of the frequencies of the blockade dips (ωB) reveal
that the spread in the frequencies of the subradiant photon
blockade is of the order of the inhomogeneous broadening in
the emitter frequencies, whereas the frequencies of polari-
tonic photon blockade are significantly more robust to
inhomogeneous broadening in the emitter frequencies albeit
with a much larger value of gð2Þð0;ωBÞ. A similar trend is
observed in the detuned system [Fig. 4(b)], with the
polaritonic dip being robust to inhomogeneous broadening,
and the interference-based dips (identified as the first dip
which smoothly plateaus to 1 as jωLj → ∞) are much more
sensitive to the inhomogeneous broadening while reaching
very low gð2Þð0;ωBÞ values (∼0–0.1) similar to the identical-
emitter system.
Finally, our study has uncovered two fundamental trade-

offs in multiemitter CQED systems which can help inform
future experiments and their suitability for quantum infor-
mation processing applications. First, for a given emitter-
cavity coupling strength and cavity decay rate, there exists
a trade-off between the achievable transmission and the
depth of photon blockade [measured as gð2Þð0;ωBÞ].
Increasing either the cavity-emitter detuning or the number
of emitters increases the depth of photon blockade, but also
reduces transmission at the blockade frequency. Second, a
trade-off exists between the depth of achievable blockade
and robustness of the blockade frequency to inhomo-
geneous broadening—polaritonic photon blockade, which
typically has gð2Þð0;ωBÞ ∼ 1, is robust to inhomogeneous
broadening, while detuning the emitters from the cavity
resonance can allow the multiemitter CQED system to

exhibit the interference-based photon blockade with sig-
nificantly lower gð2Þð0;ωLÞ. However, relying on destruc-
tive interference of two-photon emissions from various
two-excitation eigenstates makes the blockade sensitive to
the emitter frequencies. Moreover, the subradiant dips in
the photon blockade also provide very low gð2Þð0;ωBÞ, but
the blockade frequencies ωB are difficult to engineer
without precise control over the emitter frequencies.
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