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We study whether the relations between the Weyl anomaly, entanglement entropy (EE), and thermal
entropy of a two-dimensional (2D) conformal field theory (CFT) extend to 2D boundaries of 3D CFTs, or
2D defects of D ≥ 3 CFTs. The Weyl anomaly of a 2D boundary or defect defines two or three central
charges, respectively. One of these, b, obeys a c theorem, as in 2D CFT. For a 2D defect, we show that
another, d2, interpreted as the defect’s “conformal dimension,” must be non-negative if the averaged null
energy condition holds in the presence of the defect. We show that the EE of a sphere centered on a planar
defect has a logarithmic contribution from the defect fixed by b and d2. Using this and known holographic
results, we compute b and d2 for 1=2-Bogomol’nyi-Prasad-Sommerfield surface operators in the
maximally supersymmetric (SUSY) 4D and 6D CFTs. The results are consistent with b’s c theorem.
Via free field and holographic examples we show that no universal “Cardy formula” relates the central
charges to thermal entropy.
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Introduction.—CFTs play a central role in many
branches of physics. In condensed matter physics, they
describe critical points. In string theory, the worldsheet
theory is a CFT. In quantum field theory, CFTs are fixed
points of renormalization group (RG) flows.
CFTs in two-dimensional Minkowski space, i.e., 2D

CFTs, enjoy Virasoro symmetry with central charge c.
Unitarity plus ground state normalizability implies c ≥ 0.
For an RG flow from ultraviolet (UV) to infrared (IR) CFTs
with central charges cUV and cIR, respectively, unitarity,
locality, and Poincaré symmetry imply the c theorem:
cUV ≥ cIR [1]. These properties suggest c measures the
effective number of massless degrees of freedom (DOF),
which is expected to be non-negative and to decrease along
RG flows.
Virasoro symmetry also implies that c determines at least

four other following quantities that can count DOF: (i) c
fixes the normalization of the two-point function of the
stress-energy tensor, Tμν. (ii) On a background with a
nontrivial spacetimemetric gμνwithRicci scalarR, quantum
effects can produce the Weyl anomaly, Tμ

μ ¼ −ðc=24πÞR
[2–5]. (iii) The EE of a spatial interval of length l, which
measures the strength of vacuum correlations, is SEE ¼
ðc=3Þ lnðl=εÞ þOðε0Þ [6,7], with UV cutoff 0 < ε ≪ 1.
(iv)At nonzero temperature T the CFT’s entropy density, s,

which measures the number of thermodynamic microstates,
is s ¼ ðπ=6ÞcT [8,9].
While CFTs have an infinite correlation length, no real

system is infinite: boundary conditions (BCs) will always
be important. Moreover, no real system is perfect: defects
such as impurities, domain walls between differently
ordered phases, and so on will always be important.
Constructing and classifying CFTs with conformally
invariant boundaries (BCFTs) or defects (DCFTs) is thus
crucial for describing an enormous number of systems.
In this Letter, we study a 2D boundary of a 3D CFTor 2D

conformal defect in aD ≥ 3 CFT. We assume the boundary
or defect is flat, i.e., a static straight line. Such a system does
not have Virasoro symmetry in general: the 2D contribution
to Tμν is not conserved because energy and momentum can
flow between the boundary or defect and the bulk CFT, and
these systems have a finite number of symmetry generators
following from the CFT’s SOðD; 2Þ conformal symmetry
being broken to SOð2; 2Þ × SOðD − 2Þ, where SOð2; 2Þ are
conformal transformations leaving the static line invariant
and SOðD − 2Þ are rotations about the static line [10].
We find that the logarithmic term in SEE of a spherical

region centered on a defect is fixed by Tμ
μ, while in general

no simple relation exists between Tμ
μ and s. The boundary

or defect contribution to Tμ
μ includes multiple central

charges [11,12]. Assuming the averaged null energy con-
dition (ANEC) holds in the presence of the defect, we
conjecture a positivity bound on one of the defect central
charges. In Ref. [13], we also find new central charges
allowed in 4D if parity is broken. We use the method of
Refs. [21,22] to show that the logarithmic term in general
depends on two defect central charges—confirming and
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extending a key result of Ref. [23]. Using this and known
holographic results, we compute these central charges for
certain 1=2-Bogomol’nyi-Prasad-Sommerfield (BPS) sur-
face operators in the maximally SUSY 4D and 6D CFTs.
Finally, for the free massless scalar and fermion 3D BCFTs
and for 2D defects holographically dual to probe branes, we
calculate s ∝ T at the boundary or defect, with no universal
relation between the proportionality coefficient and central
charges.
Conventions.—We start with a local, unitary, Lorentzian

CFT on a D ≥ 3 spacetime M with coordinates xμ

(μ ¼ 0; 1;…; D − 1) and metric gμν, which we will call
the “bulk” CFT. We introduce a codimension D − 2 defect
along a static 2D submanifold Σwith coordinates ya (a ¼ 0,
1). We parametrize Σ ↪ M by embedding functions XμðyÞ
such that Σ’s induced metric is γab ≡ ∂aXμ∂bXνgμν. We
denote M’s covariant derivative as ∇μ and Σ’s induced

covariant derivative as ∇̂a, which acts on a mixed tensor T μ
a

as ∇̂aT
μ
b ¼ ∂aT

μ
b þ Γμ

νaT ν
b − Γ̂c

abT
μ
c. The second funda-

mental form is then Πμ
ab ¼ ∇̂a∂bXμ, with traceless part

Π
∘ μ
ab ≡ Πμ

ab −
1
2
γabγ

cdΠμ
cd.

Physically, the defect can arise from 2D DOF coupled to
the bulk CFT and/or BCs imposed on bulk CFT fields [24].
In 3D the defect is a domain wall between two CFTs, and if
one of these is the “trivial” CFT, then the defect is a
boundary.
The Weyl anomaly.—We denote the DCFT partition

function as Z and the generating functional of connected
correlators W ≡ −i lnZ, which are both functionals of gμν
and Xμ. VaryingW, we define the stress-energy tensor, Tμν,
and displacement operator, Dμ

δW ¼ 1

2

Z
dDx

ffiffiffiffiffiffi
−g

p
δgμνhTμνi þ

Z
d2y

ffiffiffiffiffiffi
−γ

p
δXμhDμi;

where g≡ det gμν and γ ≡ det γab. Invariance of W under
reparametrizations of ya implies Dμ’s components along Σ
vanish [29]. Invariance ofW under reparametrizations of xμ

implies ∇νhTνμi ¼ −δD−2hDμi, with δD−2 a delta function
that restricts to Σ [29]. Physically, hTμνi is not conserved at
Σ because the defect and bulk can exchange transverse
energy momentum.
Our DCFTs are invariant under infinitesimal Weyl

transformations, δωgμν ¼ 2ωgμν and δωXμ ¼ 0, up to the
Weyl anomaly [2–5]: δωW ¼ R

dDx
ffiffiffiffiffiffi−gp

ωhTμ
μi, where

hTμ
μi is built from external sources, such as gμν. We consider

contributions to hTμ
μi from gμν and ∂aXμ only. Determining

hTμ
μi’s most general form requires solving the Wess-

Zumino (WZ) consistency condition, ½δω1
; δω2

�W ¼ 0,
and then fixing any local counterterms that contribute to
hTμ

μi. In our DCFTs, hTμ
μi ¼ hTμ

μibulk þ δD−2hTμ
μidef , where

hTμ
μibulk and hTμ

μidef are bulk CFT and defect Weyl
anomalies, respectively, and we fixed local counterterms

to cancel terms with normal derivatives of δD−2. For
hTμ

μibulk we will only need to know that hTμ
μibulk ¼ 0 in

odd D, but can be nonzero in even D, which defines
the bulk central charge(s). For a 2D defect in a D ≥ 3
DCFT [11,12,30]

hTμ
μidef ¼ −

1

24π
ðbRΣ þ d1II

∘ μ
abII

∘ ab
μ − d2Wab

abÞ; ð1Þ

where RΣ is Σ’s intrinsic scalar curvature, Wabcd is the
pullback of the bulk Weyl tensor to Σ, and b, d1, and d2 are
defect central charges. When D ¼ 3, Wabcd ¼ 0 identi-
cally, so d2 exists only for D ≥ 4.
Bounds on central charges.—As mentioned above, in a

2D CFT c determines various observables and with
reasonable assumptions, such as unitarity, obeys c ≥ 0
and the c theorem. By comparison, less is known about b,
d1, and d2. Under Weyl transformations

ffiffiffiffiffiffi−γp
RΣ changes

by a total derivative, while both
ffiffiffiffiffiffi−γp

II
∘ μ
abII

∘ ab
μ and

ffiffiffiffiffiffi−γp
Wab

ab

are invariant [4]. As a result, in the Euclidean DCFT on SD

of radius r with bulk partition function ZCFT and with
defect along a maximal S2, Z=ZCFT ∝ ðrΛÞb=3 [29]. For a
local, unitary defect RG flow, b obeys a c theorem,
suggesting b counts defect DOF [29]. WZ consistency
forces b to be independent of any marginal couplings. The
normalization of Dμ ’s two-point function is fixed by d1,
such that unitarity implies d1 ≥ 0 [31,32].
Table I shows b, d1, and d2 in the 3D BCFTs of a free,

massless real scalar or Dirac fermion [29,33,34], and in
CFTs holographically dual to Einstein gravity in (Dþ 1)-
dimensional anti–de Sitter space, AdSDþ1, with metricGMN
(M;N ¼ 0; 1;…; D) and defect dual to a probe brane along
AdS3 whose action Sprobe ¼ −Tbr

R
d3ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðP½GMN �Þ

p
with tension Tbr and brane coordinates ξ [30]. In all of these
theories, the central charges are≥ 0with the exception of the
scalar with Dirichlet BC, which has b < 0. This example
proves that unitarity does not require b ≥ 0.
For a unitary 3D BCFTwith unique stress-energy tensor

at the boundary [35], Ref. [32] conjectured

b ¼ 2π2

3
ϵð1Þ − 2

3
d1; ð2Þ

TABLE I. Central charges b, d1, and d2 of Eq. (1) for 3D
BCFTs of free, massless real scalars with Dirichlet or Robin BC,
or Dirac fermion with the unique conformal “mixed” BC
[29,33,34], and for a 2D defect dual to a probe brane of tension
Tbr along AdS3 inside AdSDþ1 of radius L [30].

Theory BC b d1 d2

Scalar Dirichlet −1=16 3=32 N/A
Scalar Robin 1=16 3=32 N/A
Fermion Mixed 0 3=16 N/A
Probe brane N/A 6πL3Tbr 6πL3Tbr 6πL3Tbr
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where ϵðvÞ is a contribution to Tμν’s two-point function
from exchange of spin-2 boundary operators, with v ∈
½0; 1� the BCFT conformal cross ratio, with boundary at
v ¼ 1 [31,36,37]. Unitarity implies ϵðvÞ ≥ 0 [31].
However, if the BCFT has any spin-2 boundary operators
of dimension Δ ∈ ½2; 3Þ, then ϵðvÞ diverges as ð1 − vÞΔ−3
when v → 1. In that case, unitarity does not constrain the
sign of ϵð1Þ, the ð1 − vÞ0 term in ϵðvÞ’s expansion about
v ¼ 1, and so b has no definite lower bound. On the other
hand, in the absence of such operators ϵðvÞ is regular as
v → 1, unitarity implies ϵð1Þ ≥ 0, and hence b ≥ − 2

3
d1.

All the examples in Table. I obey this bound, and the free
scalar with Dirichlet BC saturates it.
We can prove a new bound assuming the ANEC holds in

the presence of the defect. The ANEC states that for any
null direction u,

R
∞
−∞ duhTuui ≥ 0. Proofs of the ANEC for

CFTs appear in Refs. [38,39]. Though these proofs have
not yet been extended to BCFTs or DCFTs, they rely
mainly on unitarity and causality, which in a BCFT or
DCFT should suffice to guarantee that a lightlike observer’s
total energy is ≥ 0.
While SOðD; 2Þ symmetry forces hTμνi ¼ 0 for the

undeformed CFT, the SOð2; 2Þ × SOðD − 2Þ symmetry
preserved by Σ allows hTμνi ≠ 0. When D ¼ 4,
Refs. [25,27] showed that by writing the most general
form of hTμνi such that it is well defined as a distribution
and comparing its variation under constant Weyl trans-
formations to the variation of hTμ

μidef with respect to gμν,
hTμνi completely determined by d2. Generalizing to arbi-
trary D ≥ 4 is straightforward: with coordinates xi trans-
verse to Σ (i ¼ 2; 3;…; D − 1), and for a point a distance
jxij > 0 from Σ

hTabi ¼ −
hD
2π

ηab

jxijD ; hTaii ¼ 0;

hTiji ¼ hD
2πðD − 3Þ

3δijjxkj2 −Dxixj

jxljDþ2
;

hD ≡ 1

3volðSD−3Þ
D − 3

D − 1
d2; ð3Þ

where hD is the defect’s “conformal dimension” (see, e.g.,
Ref. [40]). Using SOð2; 2Þ × SOðD − 2Þ transformations,
any null geodesic a distance R from Σ can be mapped to

t¼Ru; x1 ¼Rucosψ ; x2 ¼Rusinψ ; x3¼R; ð4Þ

and xi>3 ¼ 0, where ψ is the angle between Σ and the null
geodesic. Plugging Eqs. (3) and (4) into the ANEC gives

Z
∞

−∞
duhTuui ¼

1

6
ffiffiffi
π

p
RD

j sinψ j
volðSD−3Þ

ΓðD−1
2
Þ

ΓðD
2
Þ d2 ≥ 0; ð5Þ

which immediately implies d2 ≥ 0.

EE and central charges.—Consider a CFT in D-dimen-
sional Minkowski space with a flat 2D defect. We will
compute the EE of a sphere of radius l centered on the
defect, using the method of Refs. [21,22].
We parametrize the Minkowski metric as

η ¼ −dt2 þ ðdx1Þ2 þ ðdjxijÞ2 þ jxij2ds2SD−3 ; ð6Þ

with the defect along t and x1 and located at jxij ¼ 0.
Defining r2 ¼ ðx1Þ2 þ jxij2, the sphere’s causal develop-
ment is given by r� t ≤ l. The change of coordinates

t ¼ l cos θ sinhðτlÞ
1þ cos θ coshðτlÞ

; r ¼ l sin θ
1þ cos θ coshðτlÞ

;

x1 ¼ r cosϕ; jxij ¼ r sinϕ: ð7Þ

maps the sphere’s causal development to the static patch of
D-dimensional de Sitter space, dSD, with metric

Ω2η ¼ −l−2cos2θdτ2 þ dθ2 þ sin2θðdϕ2 þ sin2ϕds2SD−3Þ;
Ω ¼ 1þ cos θ cosh ðτ=lÞ; ð8Þ

with τ ∈ ð−∞;∞Þ, θ ∈ ½0; π=2�, and ϕ ∈ ½0; π�. The defect
is then along τ and θ and is located at ϕ ¼ 0; π, i.e., along a
maximal dS2.
The reduced density matrix of the sphere’s causal

development maps to e−βHτ modulo normalization, with
β ¼ 2πl and Hτ the generator of τ translations. As a result,
SEE maps to thermal entropy in dSD at inverse temperature
β ¼ 2πl, SEE ¼ βE − F, with E the Killing energy corre-
sponding to Hτ and F ¼ − ln trðe−βHτÞ the dimensionless
free energy. We define the defect’s contribution as
SdefEE ≡ SEE − SCFTEE , with SCFTEE the EE of a sphere of radius
l in the bulk CFT, with the same UV cutoff, and similarly
for Edef and Fdef .
Analytically continuing to Euclidean time, τ ¼ −iτE

with τE ∼ τE þ β, Eq. (8) becomes the metric of SD, with
the defect wrapping a maximal S2. As a result, F ¼ − lnZ,
with Z the DCFT’s Euclidean partition function on SD.
Using Z=ZCFT ∝ ðrΛÞb=3 with Λ ¼ 1=ε, we find

Fdef ¼ − ln ðZ=ZCFTÞ ¼ −
b
3
ln

�
l
ε

�
þOðε0Þ: ð9Þ

The defect’s contribution to the Killing energy is

Edef ¼
Z

dSμKνhTμνidef ; ð10Þ

with dSμ ¼ l−1 cos θðsin θÞD−2ðsinϕÞD−3dθdϕdsSD−3
δτμ

the volume element on a constant time slice, and Kμ∂μ ¼
∂τ the time translation Killing vector. We thus need
hTτ

τidef , which we obtain by Weyl transformation from
the Minkowski-space hTμνi in Eq. (3), with the result
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hTτ
τidef ¼ −

ðsin θ sinϕÞ−D
6πvolðSD−3Þ

D − 3

D − 1
d2 −

b
24π

δD−2; ð11Þ

where the first term comes fromWeyl-rescaling Tμν and the
second term comes from Tμν’s anomalous Weyl trans-
formation law. The integral of the second term is finite, but
the integral of the first diverges at θ ¼ 0 and the defect
ϕ ¼ 0; π. Using a regulator ε=l, we thus find

βEdef ¼ −
1

3

D − 3

D − 1
d2 ln

�
l
ε

�
þOðε0Þ: ð12Þ

Plugging Eqs. (9) and (12) into SEE then gives [41]

SdefEE ¼ 1

3

�
b −

D − 3

D − 1
d2

�
ln

�
l
ε

�
þOðε0Þ: ð13Þ

We have also derived Eq. (13) via the replica method,
generalizing the result of Ref. [34] for 3D BCFTs to D ≥ 3
DCFTs [44].
Further checking Eq. (13), we consider the holographic

DCFT given by a probe brane along an AdS3 submanifold
inside AdSDþ1 of radius L, with action Sprobe above. In that
case, Ref. [29] found

SdefEE ¼ 4πTbrL3

D − 1
ln

�
l
ε

�
þOðε0Þ; ð14Þ

which agrees with Eq. (13), using b and d2 from Table I.
Equation (13) agrees with a key result of Ref. [23] that

the coefficient of ln ðl=εÞ in SdefEE includes a contribution
from hTμνi, which we have shown is proportional d2.
For defects of various dimensions, Refs. [23,45,46]

found that the universal part of SdefEE need not obey a defect
c theorem. For a 2D defect in a D ≥ 4 CFT, Eq. (13) shows
although b obeys a defect c theorem, the combination of b
and d2 in Eq. (13) need not and does not [46].
Holographic examples.—First, we consider 4D N ¼ 4

SUSY UðNÞ YM theory at large N and large ’t Hooft
coupling λ, dual to 10D type IIB supergravity (SUGRA) on
AdS5 × S5 [47]. SUGRA solutions describing the most
general 1=2-BPS 2D surface operators appear in Ref. [48].
Generically such a surface operator breaks UðNÞ →Q

n
k¼1UðNkÞ with

P
n
k¼1 Nk ¼ N and produces a nonzero

expectation value for one adjoint complex scalar field, Φ,
which decomposes into the block diagonal form

hΦi ¼ e−iϕffiffiffi
2

p jxij diagðz11N1
; z212;…; zn1Nn

Þ; ð15Þ

with S1 angular coordinate ϕ around the defect, zk ∈ C
dimensionless parameters, and 1Nk

the Nk × Nk identity
matrix [48–51]. For such a defect Ref. [50] holographically
computed hTμνi for M ¼ AdS3 × S1, though the result is

scheme dependent. We fix the scheme by conformally
mapping AdS3 × S1 to Minkowski space and demanding
that without a defect hTμνi ¼ 0. Reference [52] holo-
graphically computed SdefEE for a sphere centered on the
defect. Using these results, Eqs. (3) and (13) give

b ¼ 3

�
N2 −

Xn
k¼1

N2
k

�
;

d2 ¼ 3

�
N2 −

Xn
k¼1

N2
k

�
þ 24π2N

λ

Xn
k¼1

Nkjzkj2: ð16Þ

Both of these are manifestly positive, and b is independent
of the marginal parameters λ and zk.
As discussed in Ref. [50] the one-loop hTμνi on

AdS3 × S1 in the presence of the surface operator matches
the term ∝ N=λ in Eq. (16). Given that the other terms in
Eq. (16) are independent of the marginal parameters at large
λ, and that Tμν on AdS3 × S1 is scheme dependent, b and
d2 may in fact be one-loop exact.
Second, we study 1=2-BPS Wilson surface defects in the

6D AM−1 N ¼ ð2; 0Þ SUSY CFT specified by a represen-
tation, R, of AM−1 with highest weight w and a 2D surface
[53]. When M ≫ 1 the theory is holographically dual to
11D SUGRA on AdS7 × S4 [47], and Wilson surfaces are
dual to M2 branes, or M5 branes with M2-brane flux,
reaching the AdS7 boundary at Σ [54–58].
Using the holographic results for hTμνi and SdefEE in the

presence of a flat Wilson surface [59,60], Eqs. (3) and (13)
give

b¼ 24ðw;ϱÞþ3ðw;wÞ; d2¼ 24ðw;ϱÞþ6ðw;wÞ; ð17Þ

where ϱ is the gauge algebra’s Weyl vector, and ð·; ·Þ is the
scalar product on the weight space. Both b and d2 are ≥ 0
for all R and are invariant under the action of the Weyl
group. In the defect, RG flows triggered by the expectation
value of a marginal Wilson surface operator studied holo-
graphically in Refs. [46,61,62], each of b and d2 is larger in
the UV than in the IR, consistent with b’s c theorem.
Thermal entropy.—For a 2D CFT on S1 of radius r, in

the thermodynamic limit rT → ∞, c determines the ther-
mal entropy: S ¼ ðπ=6ÞcTð2πrÞ [63,64]. Do b, d1, and d2
similarly determine a 2D boundary or defect’s contribution
to S?
Consider the 3D BCFTs of free, massless real scalar or

Dirac fermion on a hemisphere of radius r. In the
Supplemental Material [13], we calculate the boundary
contribution to thermal entropy, S∂ . When rT → ∞, we find

SR=D∂ ¼ � π

12
Tð2πrÞ; Sf∂ ¼ 0 ð18Þ

where the superscripts denote the Robin scalar, Dirichlet
scalar, and Dirac fermion, respectively. Table I shows the
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Dirac fermion has d1 ≠ 0, so Sf∂ ¼ 0 proves that S∂ cannot
have a term∝ d1 with universal nonzero coefficient. Instead,

Table I and Eq. (18) suggest S∂¼? ð4π=3ÞbTð2πrÞ, which, if
true, looks like eight times a Cardy entropy.
However, consider the holographic DCFT given by a

probe brane along an asymptotically AdS3 submanifold
inside an AdSDþ1-Schwarzschild black hole of radius L
and temperature T, with action Sprobe above. In the
Supplemental Material [13], we compute this defect’s
contribution to S

Sdef ¼
16π2

D2
L3TbrTð2πrÞ; ð19Þ

which via Table I we can write as Sdef ¼
? ð1=D2Þð8π=3ÞbTð2πrÞ, but without further input this
choice is arbitrary as b ¼ d1 ¼ d2 [30]. We can compare
to a DCFT given by gluing two free-field 3D BCFTs along
their boundaries, with no boundary interactions, whose Sdef
is simply a sum of the S∂ in Eq. (18). WhenD ¼ 3, no such
sum can produce the 1=D2 ¼ 1=9 factor in the holographic
Sdef . This proves that if Sdef ∝ bTð2πrÞ, then the coefficient
cannot be universal.
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