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We consider the out-of-equilibrium dynamics of the Heisenberg anisotropic quantum spin-1=2 chain
threaded by a time-dependent magnetic flux. In the spirit of the recently developed generalized
hydrodynamics (GHD), we exploit the integrability of the model for any flux values to derive an exact
description of the dynamics in the limit of slowly varying flux: the state of the system is described at any
time by a time-dependent generalized Gibbs ensemble. Two dynamical regimes emerge according to the
value of the anisotropy Δ. For jΔj > 1, reversibility is preserved: the initial state is always recovered
whenever the flux is brought back to zero. On the contrary, for jΔj < 1, instabilities of quasiparticles
produce irreversible dynamics as confirmed by the dramatic growth of entanglement entropy. In this
regime, the standard GHD description becomes incomplete and we complement it via a maximum entropy
production principle. We test our predictions against numerical simulations finding excellent agreement.
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Understanding the nonequilibrium dynamics of isolated
many-body quantum systems is currently one of the most
active research areas at the boundary between condensed
matter and statistical mechanics. The importance of these
studies lies in its multifaceted impact, ranging from
fundamental settings, such as the microscopic derivation
of thermodynamical ensembles [1–3], to more applied ones
such as the precise control of quantum systems [4,5] or the
realization of novel out-of-equilibrium phases of matter [6].
In this context, cold-atom experiments have posed basic
puzzles for theoretical understanding [7], also providing a
flexible playground to test and accurately validate predic-
tions and exact results. Quite generically, one expects that
many-body systems are able to act as their own reservoirs:
starting from out-of-equilibrium states jψi, at long times
the expectation value of a local observable Ô approaches
the thermal equilibrium one, i.e., hψ jOðtÞjψi → hOieq.
This hypothesis has been thoroughly investigated in sudden
quantum quenches, where a high-energy initial state jψi is
evolved with a time-independent Hamiltonian Ĥ [8]. In
practice, however, for generic systems, one has to resort to
numerical simulations [9] which suffer by strong limita-
tions [10,11]. For this reason, a crucial role has been played
by integrable systems, for which it is possible to derive
exact predictions. Several studies have clarified that inte-
grable models which undergo a quantum quench generi-
cally exhibit relaxation [12,13]. However, in integrable
models exist infinitely many conserved quantities Q̂j ¼P

N
n¼1 q̂jðnÞ where q̂jðnÞ is a (quasi-)local operator

[14–19]. The presence of an extensive set of integral of
motions suggests that the generalized Gibbs ensemble
(GGE) hÔiGGE ¼ Tr½Ôe−

P
j
λjQ̂j �=Z has to be used in

place of the standard one [20,21], where the appropriate

set of charges has been accurately characterized in several
studies [22–26]. The validity of the GGE conjecture has
been nowadays extensively verified not only on theoretical
ground [12,13,27–40], but even on the experimental
side [5,41].
Beyond quantum quenches, integrability constraints can

be engineered to induce exotic out-of-equilibrium proper-
ties, including superdiffusive transport [42–53], dynamical
ordering [26,54], and efficient heat pumps [55,56]. In this
context, generalized hydrodynamics [57,58] (see also
Refs. [59–86]) has provided a unifying framework to
accurately describe integrable systems in the quasista-
tionary regime which emerges from inhomogeneous initial
conditions.
In this Letter we consider the out-of-equilibrium dynam-

ics of the spin-1=2 XXZ chain Hamiltonian in the presence
of a nonvanishing magnetic flux

ĤðΦÞ ¼
XN
j¼1

1

2
ðe{Φŝþj ŝ−jþ1 þ H:c:Þ þ Δŝzjŝ

z
jþ1 − Bŝzj: ð1Þ

Above, Φ is the flux density, NΦ being the total flux
piercing the ring. sx;y;z are the usual spin-1

2
operators and

s� ¼ ðsx � isyÞ=2, periodic boundary conditions (PBCs)
are enforced, together with the thermodynamic limit (TL)
N → ∞. By means of the Jordan-Wigner transformation,
Eq. (1) describes spinless fermions, where Δ controls the
interaction strength and B the filling. In this language, the
flux density Φ is associated with a magnetic field coupled
with the Uð1Þ fermionic charge. The system is initially
prepared in an equilibrium state of the model at Φ ¼ 0
(a GGE) and the flux density ΦðtÞ is then slowly varied in
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time (see Fig. 1, top). Infinitesimal fluxes of jΦðtÞj ≃
Oð1=NÞ were considered in the literature in the context of
linear response [87,88] or as example of local quenches
[89]. Sudden global quenches of the flux were considered
in Refs. [90,91]. Here instead, we consider finite, but
slowly varying fluxes, so that the system has always time to
relax to a GGE and our choice for the initial state is thus not
restrictive. Our forthcoming analysis can be applied to
arbitrary GGEs, but for the sake of simplicity we focus on
the ground state (GS) of the model for different values of
the anisotropy Δ and of the magnetic field B.
In generic systems, slow modifications of the

Hamiltonian are governed by the celebrated adiabatic
theorem [92], according to which a sufficiently slow
dynamics always keeps the system in the instantaneous
ground state as long as a finite gap exists. This implies
reversibility of the protocol: moving slowly forth and back
the external parameter, the state is back to the initial
condition. However, reversibility is broken if the system
is gapless: in the thermodynamic limit, any finite-frequency
perturbation will inevitably produce excitations in the
system [93].
However, such a picture can be drastically modified by

integrability: extra dynamical symmetries can prevent the
production of excitations, even in the absence of an energy

gap. While this can be expected for noninteracting systems,
it leads to surprising behavior when interactions are turned
on. In particular, we disclose a rich dynamical phase
diagram (see Fig. 1). For jΔj ≥ 1 the dynamics, within
the validity of our assumptions, is fully reversible, despite
the system being gapless. On the other hand, for jΔj < 1
and in the gapless regime, reversibility is generally broken.
Note that the system does not stay in the instantaneous
ground state, but still, in some sense specified later on, the
Δ-dependent reversibility resembles the break down of the
standard adiabatic theorem due to level crossing, but
extended to the whole set of instantaneous conserved
charges.
As the flux changes, the Hamiltonians Eq. (1) are

connected to the Φ ¼ 0 case through a gauge transforma-
tion ĤðΦÞ ∼W†

ΦHð0ÞWΦ, where boundary terms were

neglected and WΦ ¼ e−iΦ
P

N
j¼1

jŝzj . This gauge symmetry
not only guarantees the instantaneous Hamiltonian to be
integrable, but also connects the whole set of conserved
charges for different fluxes Q̂jðΦÞ ¼ W†

ΦQ̂jð0ÞWΦ. The
total magnetization Ŝz ¼ P

N
j¼1 ŝ

z
j is flux independent and a

conserved charge for any ĤðΦÞ; thus it is constant along
the time evolution. The fact that the flux density Φ can be
locally (but not globally) gauged away indicates that it will
not affect the microscopic scattering of quasiparticles in the
model. In the spirit of the recently introduced generalized
hydrodynamics (GHD) [57,58], we assume a separation of
time scales: the system quickly relaxes to a local GGE
which slowly evolves due to the flux variation. Quantifying
the precise regime of validity of hydrodynamics is an open
issue [82,83]; here, we pragmatically assume the existence
of a microscopic relaxation time scale against which the
change of the flux must be compared, then benchmark our
findings against numerical simulations.
XXZ chain and generalized thermodynamics.—The

XXZ spin chain Eq. (1) is among the best known inter-
acting integrable models. Here we provide a basic sum-
mary, leaving to the Supplemental Material (SM) [94] and
Ref. [95] a more exhaustive description. The Hamiltonian
Eq. (1) at Δ is unitarily equivalent to −Ĥ at −Δ; thus
without loss of generality we analyze the spectrum for
Δ > 0. Similarly to free systems, the Hilbert space of
integrable models can be understood in terms of quasi-
particles which undergo elastic scattering. In the presence
of interactions these excitations can form bound states (also
known as strings), which behave as stable quasiparticles of
different species and constitute the particle content of the
model. In the thermodynamic limit, one can introduce the
root densities ρjðλÞ which count, on average, how many
quasiparticles of the species j at a given rapidity λ are
present in the state. An exponentially large number ∼eNS of
eigenstates, microstates, with S the Yang-Yang entropy
[95,96], correspond to the same macrostate identified
by the root densities fρjðλÞgj and have identical local

FIG. 1. Top: The Heisenberg spin-1=2 chain is threaded by a
time dependent magnetic field inducing a magnetic flux density
ΦðtÞ. The instantaneous Hamiltonian Eq. (1) describing the
dynamics is always integrable and in the adiabatic limit, the
state of the system is always locally described by a GGE
ensemble. Bottom: Phase diagram of the XXZ spin chain as a
function of the anisotropy Δ and magnetic field B. In the region
jΔj ≥ 1, the model supports an infinite number of stable bound
states, which preserve the reversibility of the dynamics. For
jΔj < 1, the number of stable bound states strongly depends on Δ
and their momentum support does not cover the full Brillouin
zone: this instability leads to irreversibility.
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properties [97]. For example, the expectation value of local
charges in the TL is

lim
TL

N−1hQ̂ii ¼
X
i

Z
dλqjiðλÞρjðλÞ: ð2Þ

Above, the ρj-independent functions q
j
iðλÞ are commonly

known as single-particle eigenvalues relative to the ith
charge and jth bound state type. Relevant examples are
energy, momentum, and number single-particle eigenvalue,
which we indicate as hjðλÞ, pjðλÞ andmj, respectively. The
number eigenvalue mj is independent of the rapidity and
counts the number of fundamental particles in the bound
state and equivalently the number of spinflips. For a
complete set of charges Eq. (2) can be inverted and in
the TL, a GGE is in one-to-one correspondence with a
macrostate [16,27].
Beyond leading to bound states, interactions induce

collective behaviors which have a net effect (dressing)
on the low-lying excitations over a GGE [57,98]. More
formally, for an arbitrary function τjðλÞ, we define the
dressing operation as the solution of the integral linear
equation

τdrj ðλÞ ¼ τjðλÞ −
X
j0

Z
dμTj;kðλ − μÞσkϑkðμÞτdrk ðμÞ; ð3Þ

where the parities σj ∈ f−1; 1g and the kernel Tj;kðλÞ
depend on the value of Δ. Then, adding an excitation over
GGEs modifies the charge in Eq. (2) by a state-dependent
amount governed by (qjiðλÞ)dr.
Consistently, the density of modes available for each qua-

siparticle ρtjðλÞ > ρjðλÞ satisfies 2πρtjðλÞ ¼ σj(∂λpjðλÞ)dr.
From the filling ϑjðλÞ ¼ ρjðλÞ=ρtjðλÞ, one can express the
Yang-Yang entropy functional S as

S ¼
X
j

Z
dλρtjη(ϑjðλÞ); ð4Þ

and ηðxÞ ¼ −x log x − ð1 − xÞ logð1 − xÞ. Equation (4)
describes the extensive part of the entanglement entropy
in a GGE state [79,99–107]. Consistently, for ground states
S ¼ 0, as the fillings behave as Fermi seas, i.e.,
ϑjðλÞ ¼ δj1ΘðΛ − jλjÞ, with ΘðxÞ the Heaviside function
and Λ the Fermi-point which depends on the magnetic
field B.
The hydrodynamic approach to the flux dynamics.—Let

us now consider the out-of-equilibrium protocol: in par-
ticular, we imagine an infinitesimal change of the flux
density Φ → Φþ dΦ and wait long enough to attain local
equilibration to the new GGE. From the charge conserva-
tion an infinite number of constraints is obtained,

hQ̂jðΦþ dΦÞiΦþdΦ ¼ hQ̂jðΦþ dΦÞiΦ: ð5Þ
Above, with h� � �iΦ we mean the expectation value with

respect to the GGE describing the state at flux density Φ.

The lhs of the above condition is readily computable
[Eq. (2)], but accessing the rhs is not trivial. In this respect,
the gauge transformation provides the missing information:
the rhs can be computed at first order in dΦ and, invoking
the completeness of the charges, an evolution equation for
ϑjðλÞ can be obtained. We leave the technical details to the
SM [94], while here we report and comment the result: an
infinitesimal increment of the flux is translated into a
rapidity shift of the fillings, i.e.,

ϑjðλ;Φþ dΦÞ ¼ ϑj

�
λ − dΦ

mdr
j ðλÞ

(∂λpjðλÞ)dr
;Φ

�
: ð6Þ

The semiclassical soliton-gas interpretation [60] of Eq. (6)
is clear: for any Φ, ϑjðλÞ describes a set of homogeneously
distributed particles with momentum pjðλÞ, which undergo
a collective acceleration pjðλÞ → pjðλÞ þmjdΦ due to
Lenz’s law, i.e., the force caused by the variation of the
magnetic field. Because of interactions, the effective force
and momentum must be suitably dressed.
We point out that Eq. (6) is the time-dependent analogue

of the already-known GHD equations in the presence of
small spatial inhomogeneities [59]. However, its meaning is
quite different: in Ref. [59] the integrable model described
by the root densities is constant in time, while in our case it
is flux dependent. We can therefore describe arbitrarily
large values of Φ, provided they are reached slowly
enough.
Reversible hydrodynamics for Δ ≥ 1.—In this case there

are infinitely many strings fρjðλÞg∞j¼1, the parity σj ¼ 1 in
Eq. (3) and mj ¼ j. The rapidities cover the compact
domain λ ∈ ½−π=2; π=2� and the momenta belong to a
Brillouin zone satisfying pjðπ=2Þ ¼ pjð−π=2Þ mod 2π.
The kernel Tj;kðλÞ and single-particle eigenvalues of

quasilocal charges qjiðλÞ are π periodic (expressions can
be found in the SM [94]). Periodic boundary conditions
must be imposed on the fillings ϑjðλÞ and thus Eq. (6)
guarantees the reversibility of the adiabatic protocol.
Consistently, the entropy [Eq. (4)] does not change
∂ϕS ¼ 0 [94]. These conclusions hold true for arbitrary
states, in Fig. 2, panels (a) and (b), we test Eq. (6) against
numerical simulations [108] initializing the system on the
ground state. We find perfect agreement.
Hydrodynamics for Δ < 1: Irreversibility and entropy

production.—In this case the structure of the root densities
is far richer and more complicated than before [95]. The
coupling is parametrized as Δ ¼ cosðγÞ, then the particle
spectrum is finite for rational values of γ=π and any value of
Δ is obtained from rational approximations (see SM [94]
for details). In contrast with the previous case, the rapidities
live on the whole real axis λ ∈ ð−∞;∞Þ. In this case,
pjðλ ¼ þ∞Þ ≠ pjðλ ¼ −∞Þmod 2π; i.e., momenta do not
belong to a Brillouin zone any longer, leaving out the
problem of fixing the correct boundary conditions. To
clarify the issue in physical terms we resort to the
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semiclassic interpretation given above: increasing Φ, a
quasiparticle is accelerated, but for a finite increase of the
flux density, it reaches a momentum corresponding to
infinite rapidity. What happens when the flux density is
further increased? An appealing physical insight can be
gained looking at single-particle eigenvalues: since it holds
true limλ→�∞q

j
iðλÞ ¼ mj × limλ→�∞q1i ðλÞ [94], from the

point of view of any quasilocal charge, at infinite rapidity
λ ¼ �∞, it is not possible to distinguish between a bound
state of type j and mj unbounded excitations [94]. In the
absence of dynamical constraints, bound states break and
merge when jλj ¼ ∞: fillings shifting towards a boundary
λ ¼ �∞ will recombine into fillings which emerge from
the same boundary. Since the charges are unable to fix the
recombination rates, we revert to the other pillar of GGE:
entropy maximization.
Using the hydrodynamic equation, it can be shown that

the change in entropy is due to boundary terms [94]
∂ΦS ¼ ∂ΦSþ þ ∂ΦS−, where

∂ΦS� ¼∓ lim
λ→�∞

�X
j

σjmdr
j ðλÞη(ϑjðλÞ)

�
: ð7Þ

Therefore, we set as the desired boundary conditions
the choice of the outgoing fillings that maximizes
∂ΦS�, together with the particle-flux conservation
limλ→�∞½

P
j σjmjmdr

j ðλÞϑjðλÞ� ¼ 0. This last condition is
needed to enforce Eq. (5) and naturally arises in the
derivation of Eq. (6) [94]. In practice, when starting from
the ground state, the Fermi sea in ϑ1ðλÞ is shifted while the

flux density is increased, up to a value where the Fermi
point reaches the boundary λ ¼ ∞; then, the other fillings
start to be populated according to the maximum-entropy
principle. Our prediction is tested against numerics in
Fig. 2, considering the GS as the initial state. We find
good agreement although convergence to adiabaticity
_ΦðtÞ → 0 is much slower than for jΔj > 1. Consistently
with our interpretation, the entanglement-entropy produc-
tion (see Fig. 3) remains suppressed up to a critical value of
Φ where bound states start recombining. Then, entropy
starts growing, demonstrating the irreversibility of the
process (see Fig. 4).

FIG. 3. Entanglement entropy relative to the initial state vs flux
density for Δ ¼ 0.5 and hŝzji ¼ 0.1. The infinitely large system is
divided in two halves and different velocities of the flux density
are considered ΦðtÞ ¼ 2πt=T. We interpret the plot as follows:
the initial filling is a Fermi sea in the first string and a finite
change in flux density is needed for translating it up to the
boundaries λ�∞. As long as the boundaries are not involved, no
entropy is produced. As soon λ ¼ �∞ is reached, the thermo-
dynamic entropy of the GGE starts to increase, accordingly with
Eq. (7). GHD predicts an infinite entanglement entropy of the
infinite half as soon as Φ overcomes the critical value: consis-
tently, the slopes in the plot increase with T.

(a)

(b) (d)

(c)

(f)

(e)

FIG. 2. Expectation value of the instantaneous energy and spin current vs flux density. The GHD prediction is compared against exact
diagonalization (ED) and time-dependent variational principle (TDVP) [108], the flux density being changed asΦðtÞ ¼ 2πt=T. Choices
of larger T result in a more faithful hydrodynamic description. Panels (a) and (b), we choose Δ ¼ coshð1.5Þ > 1hŝzji ¼ 0.1 (ED with 25
sites, blue triangle in Fig. 1). In this case the evolution is perfectly 2π periodic [94]. In (c) and (d) we rather consider Δ ¼ 0.5 and
hŝzji ¼ 0.1 (ED with 25 sites, blue square in Fig. 1), while in (e) and (f) hŝzji ¼ 0.4 (ED with 50 sites, blue circle in Fig. 1). While for
Δ > 1 we testified an excellent convergence even for relatively fast flux changes and small system sizes, significantly longer time scales
and larger systems are needed for Δ < 1. This can be understood looking at the spin current: the GHD for Δ < 1 displays nonanalyticity
points, which are located at those values of the flux density such that the Fermi sea hits the boundaries λ ¼ �∞. In order for the smooth
time evolution to well approximate such a behavior, very long times are needed.
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Conclusions.—In this Letter we investigated the effects
of integrability on slow out-of-equilibrium protocols,
focusing on the experimentally relevant case of magnetic
flux in the XXZ spin chain. We unveiled the possibility of
having fully reversible dynamics in a truly interacting
model, despite the absence of any energy gap, as usually
required by the adiabatic theorem.
However, the reversibility of the process is deeply rooted

into the thermodynamic description of the system: for
jΔj < 1 bound states can be recombined in an irreversible
manner. We provide a hydrodynamic description of both
regimes, finding good agreement with numerical simula-
tions. We show that GHD in the presence of force fields
[59] can be incomplete when lattice systems are considered
due to the instability of bound states: we complement it via
the maximum-entropy principle.
Finally, our numerical simulations show that, for

jΔj < 1, the breaking of reversibility is associated with a
very slow convergence to the hydrodynamic description.
We suspect that this phenomenon is associated with a
divergent relaxation time scale, similar to what happens
when quantum phase transitions are dynamically crossed.
In this case, deviations to GHD could be universal and
analogous to the Kibble-Zurek mechanism [93]. We post-
pone the analysis of this intriguing possibility to future
studies.
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