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We argue that symmetry-broken phases proximate in phase space to symmetry-protected topological
phases can exhibit dynamical signatures of topological physics. This dynamical, symmetry-protected
“topological” regime is characterized by anomalously long edge coherence times due to the topological
decoration of quasiparticle excitations, even if the underlying zero-temperature ground state is in a
nontopological, symmetry-broken state. The dramatic enhancement of coherence can even persist at
infinite temperature due to prethermalization. We find exponentially long edge coherence times that are
stable to symmetry-preserving perturbations and not the result of integrability.
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Practical quantum computation requires systems with
long coherence times. This has driven recent theoretical
interest in the limits and causes of decoherence in quantum
many-body systems where, typically, local quantum infor-
mation is rapidly scrambled. One tactic to store and process
quantum information is to use topological edge modes.
Combining these with many-body localization [1–9], infor-
mation can be protected for infinite times, even at effectively
infinite temperature [10–14]. Another avenue is to take
advantage of prethermalization, wherein some observables
retain memory of the initial state on a “prethermal plateau”
before finally reaching their equilibrium values, leading to
exponentially long coherence times [15–20].
In this Letter, we demonstrate an anomalous dynamical

regime—characterized by long edge coherence times—that
appears only in symmetry-broken phases proximate in
phase space to symmetry-protected topological (SPT)
phases [21–31]. The essential observation is that the
presence of a nearby SPT phase can modify the nature of
quasiparticle excitations even when the symmetry protect-
ing the topological order is spontaneously broken at zero
temperature. The topologically “decorated” [32] quasipar-
ticles inherited from the SPT phase cannot be created or
annihilated at the edges of the system, leading to exponen-
tial increases in coherence times (see Fig. 1). Neither fine-
tuning nor integrability is required. Even more remarkably,
this protection of edge coherence remains at finite temper-
ature and can persist all the way to infinite temperature
thanks to prethermalization. Aspects of SPT physics, there-
fore, are retained in the dynamics even if the underlying
zero-temperature ground state is symmetry broken.
Thoughwewill focus on SPTphases, amotivation for this

work comes from the ongoing experimental search for
quantum spin liquids [33–35], which are another form of
topological paramagnets. Given the fact that many spin
liquid candidate materials exhibit magnetically ordered

ground states, the question arose as to whether remnants
of a nearby topological paramagnetic phase could be
detected in their dynamical properties. Indeed, such a
“proximate spin liquid” regime was recently reported in
α-RuCl3 [36,37]. In this Letter, we answer this question in
the affirmative, by providing an example of a proximate SPT
regime whose anomalous dynamical properties are sharply
defined.
Below we define a simple model of a proximate SPT

regime that demonstrates exponential enhancement in edge
coherence times. To understand its dynamics, we consider
the regular and decorated quasiparticles inherent to the
model. This quasiparticle picture is confirmed at zero

FIG. 1. Sketch of the dominant processes that tunnel between
the two ferromagnetic ground states. Domain walls (DW) are
represented by blue bars, and their decorated counterparts (DW*)
are red and carry a Z2 charge. Under periodic boundary
conditions (PBC), the two types of domain walls are equivalent.
With open boundary conditions (OBCs), however, the decorated
domain walls cannot be annihilated at the edges without breaking
the symmetry, so will “bounce off” instead. Decorated domain
walls are therefore unable to flip the edge spin without breaking
the symmetry.
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temperature, where we accurately predict the coherence
times via perturbation theory. We then proceed to show that
the regime is robust to symmetry-preserving perturbations,
independent of integrability, and holds at all temperatures.
Model and phase diagram.—We rely on the simplest

model of an SPT phase in one dimension, a variant of the
Haldane chain [38] protected by a global Z2 × Z2 sym-
metry [30,32,39]. Consider a spin-1

2
chain with two alter-

nating species, σ and τ, with a global Zσ
2 × Zτ

2 symmetry
generated by

Q
iσ

x
i and

Q
iτ

x
i . (We use the convention

σ0; τ0; σ1; τ1;…; τðL=2Þ−1 to label the L spins.) We adopt a
Hamiltonian

ĤðxÞ ¼ JĤFM;σ þ ð1 − xÞĤPM þ xĤSPT þ V; ð1Þ
where 0 ≤ x ≤ 1, ĤFM;σ ¼ −

P
iσ

z
iσ

z
iþ1, the paramagnetic

(PM) term is ĤPM ¼ −
P

i σ
x
i þ Bτxi , and ĤSPT ¼

−
P

i τ
z
i−1σ

x
i τ

z
i þ Bσzi τ

x
i σ

z
iþ1. Finally, V includes generic

symmetry-preserving perturbations to break integrability,
as described in the Supplemental Material [40]. As shown
in the inset of Fig. 2, this model interpolates between three
different phases: a ferromagnet for the σ spins at large J, a
trivial paramagnet at small J and x near 0, and an SPT
phase (“topological paramagnet”) at small J and x near 1.
Starting from either paramagnetic phase, J drives an Ising
transition to a ferromagnet for the σ spins, and B controls
the energy scale for the τ spins, which remain paramagnetic
across the whole phase diagram [41].
A standard result is that the two paramagnetic phases

have the same bulk properties, but are different at the
boundary: the SPT phase has a free spin-1

2
at each edge,

which is protected as long as the Z2 × Z2 symmetry
survives [30,32]. A lesser-known result is that these edge
modes actually survive at the phase transition, leading to a
“topological” variant of the Ising transition on the

topological side (the red Ising* line), by forcing an
anomalous conformal boundary condition [42–44]. In
the ferromagnetic phase, however, one would naively
expect the topological physics to be lost since the protect-
ing symmetry is spontaneously broken.
Decorated quasiparticle picture.—We show instead that

the dichotomy between x ¼ 0 and x ¼ 1 extends beyond
the Ising transition to the ferromagnetic phase, a distinction
rooted in the changing nature of the quasiparticles. As usual
for a ferromagnet, quasiparticle excitations are domain
walls, separating domains of opposite magnetization (for
the σ spins). What is unusual, however, is that there are two
kinds of domain walls in this model: the regular domain
walls (RDW), generated by HPM, and the “decorated”
domain walls (DDW), generated by HSPT [40]. The latter
kind is decorated in the sense that it carries a charge for the
Zτ

2 symmetry [32,40,42].
This decoration is inconsequential in the bulk, where

domain walls are always created or annihilated in pairs—
but it has a drastic effect at the edge of the system. Flipping
an edge spin changes the number of domain walls by �1,
which leads to a change in the total Zτ

2 charge sector
whenever the domain wall is decorated. Such a process
necessarily breaks the Zτ

2 symmetry and is therefore
disallowed. This means that DDWs cannot flip an edge
spin without breaking the symmetry, while RDWs can.
Note that the PM (resp. SPT) phase corresponds to the
condensation of regular (resp. decorated) domain walls.
These considerations are, of course, irrelevant for static

properties of the FM ground states, which contain no
domain walls. On the other hand, dynamical properties are
dominated by the dynamics of domain walls, and it hence
makes a difference whether they are decorated or not. SPT
proximity effects are thus invisible in static bulk properties,
but are revealed in dynamical properties of the edge. The
remainder of the text will therefore be devoted to the
dynamical properties of the model.
Let us consider the autocorrelation of the edge spin at

temperature T, CTðtÞ ¼ Rehσz0ðtÞσz0ð0ÞiT . Figures 2 and
4(a) show CTðtÞ for various cases, and Fig. 3 shows the
coherence time as a function of x, defined as the typical
decay time of CTðtÞ [45]. As seen in Fig. 3, for open
boundary conditions (OBCs), the edge coherence time is
larger by several orders of magnitude at x ¼ 1 than at
x ¼ 0, while no such increase is observed in the case of
periodic boundary conditions. This dramatic increase in
edge coherence is due to the dominance of DDWs in the
region close to x ¼ 1 (dubbed FM*).
T ¼ 0 dynamics.—To confirm the quasiparticle picture

we have outlined, we first work at zero temperature.
Although the dynamics of a T ¼ 0 ferromagnet become
trivial in the strict thermodynamic limit, we work at finite
system sizes, which will provide a useful diagnostic of the
“hidden” topological effects in the FM* region. In this case,
the notion of “coherence time” is nothing but the period of

FIG. 2. Autocorrelation of the edge spin at zero temperature
computed with exact diagonalization (ED) for 14 spins and OBC.
The parameters are J ¼ 5.2, B ¼ 1.424, and Vðg1;…; g5Þ is
chosen to break integrability completely [40]. Inset: sketch of the
phase diagram for Eq. (1) as a function of x and J. Phases are
described in the text. The location of the dots corresponds to the
data by color.
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the Rabi oscillations between the two ground states, as seen
in Fig. 2. Deep in the ferromagnetic phase, there are indeed
two nearly degenerate ground states, ðj↑i � j↓iÞ= ffiffiffi

2
p

,
where j↑i (resp. j↓i) is a state with σzi ¼ þ1 (resp. −1)
and τxi ¼ þ1. The Rabi period is simply the inverse of the
ground state energy splitting ΔE. While the coherence time
τ is infinite in the thermodynamic limit for all x, one can see
in Figs. 2 and 3 that its finite-size value has a systematic x
dependence–it grows exponentially with x—thereby
revealing a fundamental difference between the dynamics
of the two sides.
We first study the special case V ¼ 0, which qualitatively

captures the V ≠ 0 behavior as long as T ¼ 0. Within
degenerate perturbation theory, the splitting ΔE is propor-
tional to the tunneling rate from j↑i to j↓i. With PBC, the
lowest order tunneling process occurs at order L=2 and
corresponds to two domain walls being nucleated, propa-
gating around the system, and annihilating each other (see
Fig. 1). Such a process can occur for a pair of either RDWs
or DDWs, leading to

ΔEPBCðxÞ ∝ ΔEDW þ ΔEDW�; ð2Þ
where ΔEDW ¼ f½1 − x�=½4ðJ þ xBÞ�gL=2 is the contribu-
tion for RDWs and ΔEDW�ðxÞ ¼ fx=4½J þ ð1 − xÞB�gL=2
is the contribution for DDWs. Note that Eq. (2) is
symmetric under x ↔ 1 − x, reflecting the equivalence
of RDWs and DDWs under PBC.
Open boundary conditions change the situation signifi-

cantly. Given the facts that (i) going from one ground state
to another involves flipping all the σ spins, including at the
edges, and (ii) DDWs cannot flip an edge spin, it is clear
that only RDWs contribute to the splitting (see Fig. 1 for
illustration). Hence

ΔEOBCðxÞ ∝ ΔẼDW; ð3Þ

where the tilde signifies that the RDW contribution is
slightly modified compared to PBC: ΔẼDW ¼ 1

1−x ½ð1 − xÞ=
2ðJ þ xBÞ�L=2. This is manifestly asymmetric under x ↔
1 − x and indeed vanishes in the limit x → 1, leading
to a diverging coherence time on the topological side.
Figure 3(a) shows that Eqs. (2) and (3) accurately predict
the coherence times in this simple limit. Turning V back on
makes the T ¼ 0 coherence time finite at x ¼ 1 for finite L,
but still larger than the x ¼ 0 coherence by a factor that is
exponential in L [as shown in Fig. 3(a)].
T > 0 dynamics.—At nonzero temperatures, there is a

finite density ρ ∼ e−Δ=T of domain wall quasiparticles,
where Δ is the energy gap of the excitation [46,47]. For
x close to 1, decorated domain walls have a lower gap than
regular ones, and therefore are expected to dominate the
dynamics at low T. For higher T, on the other hand, there is
a finite density of both kinds of domain walls, so the naive
expectation is that topological effects will disappear.
Surprisingly, we find instead that the enhancement of

coherence from x ¼ 0 to x ¼ 1 with open boundary con-
ditions persists even at T ¼ ∞ (Figs. 3 and 4). (Results at
intermediate temperatures 0 < T < ∞ are similar [40].) We
have checked that this behavior does not rely on integra-
bility. The level spacings, shown in Fig. 4(c), havegood level
repulsionwith a shape characteristic of Gaussian orthogonal
ensemble statistics [3]. The many-body density of states in
panel (d) is normally distributed, as is required to be
representative of the thermodynamic limit [48] (see
Ref. [40] for more details). While the coherence time
initially increases exponentially with L, it eventually
saturates to a L-independent value, as expected for a
thermalizing system. This behavior can be seen in
Figs. 4(a) and 4(e).
To understand the survival of coherence at infinite

temperature, we appeal to the physics of prethermalization.
As shown in Fig. 4(e), the dominant parameter that controls
the coherence time is B, which sets the energy scale for the
τ spins. It is therefore instructive to consider the case of
B ≫ 1 and to rewrite the Hamiltonian as

Ĥ ¼ −B½xN̂� þ ð1 − xÞN̂� þ V̂p; ð4Þ

where N̂� ¼ P
i σ

z
i τ

x
i σ

z
iþ1, N̂ ¼ P

i τ
x
i , and V̂p contains all

the Oð1Þ terms that are independent of B. The operator N̂�

counts the number of “mismatched decorations”: domain
walls without aZτ

2 charge attached, orZ
τ
2 charges without a

domain wall.
While there are symmetry-respecting processes which

can flip the edge spin, one can show that they necessarily
have to change the N̂� sector. (For instance, σx0 anticommutes
with N̂�.) Such processes are exponentially suppressed with
B due a theorem of Abanin-De Roeck-Huveneers-Ho

(a) (b)

FIG. 3. (T ¼ 0) Comparison of the coherence time (data) with
its analytical prediction (lines). Data are computed on 14 spins
via ED with parameters ðJ; BÞ ¼ ð5.2; 1.27Þ. The symbols were
obtained with V ¼ 0, whereas the dashed lines were obtained
with V ≠ 0. (T ¼ ∞) Comparison of coherence times for OBC
and PBC at infinite temperature on 14 spins with ðJ; BÞ ¼
ð1.57; 9.03Þ and V chosen so that the model is not integrable–
see Figs. 4(c) and 4(d). Numerical details are given in the
Supplemental Material [40].
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(henceforth ADHH) [49]. The theorem states, roughly, that
if e2πiN̂

� ¼ 1 and N̂� is a sum of commuting projectors—
which is indeed the case here—then N̂� is approximately
conserved until at least a (quasi)-exponentially long time
τ ∼ eBx=h, where h is the norm of the second-largest term
after N̂�. (SeeRef. [49] for the precise statement.) For x close
to 1 [50], the second largest term is in V̂p, so h is Oð1Þ and
we expect τ ∼ eBx. We find indeed in Fig. 4(e) that the large-
L saturation value of τ increases exponentially with B for
x ¼ 1. For x away from 1, the second largest term is N̂,
leading to τ ∼ ex=ð1−xÞ [excluding special values of x at
which the sumofN andN� have integer spectrum, leading to
extra peaks in the coherence; see Fig. 3(b)].
This enhancement of the coherence is “topological”,

since only the coherence of the edge is exponentially
enhanced and, unlike previous applications of the
ADHH theorem [19,20], it is also symmetry protected.
Explicitly, this means that adding terms which break the
Z2 × Z2 symmetry can immediately destroy the anoma-
lously long edge coherence times. The term σx0τ

z
1, for

instance, commutes with N̂� but breaks the Zτ
2 symmetry

and is able to flip the edge spin and suppress the coherence,
as shown in Fig. 4(b). This provides a clear example of
(prethermal) SPT physics even at infinite temperature, in a
regime where the protecting symmetry is spontaneously
broken at zero temperature.
Discussion.—We have demonstrated the existence of a

proximate SPT regime, characterized by anomalously long
edge coherence times. The key to the model’s dynamics is
the behavior of its two species of quasiparticles: regular and
decorated domain walls. The DDWs, which are inherited
from the SPT phase, cannot be created or annihilated near
the edges of the system without breaking the symmetry,

giving rise to a dramatic increase in edge coherence. At
T ¼ 0, we have confirmed the quasiparticle picture within
perturbation theory. The enhancement of edge coherence
was shown to be stable to perturbations and to survive to all
temperatures thanks to prethermalization.
The existence of a proximate SPT regime has several

broader implications. Regarding the low temperature phys-
ics, we have shown how the dynamics of low-lying
quasiparticles in a “trivial” ordered phase can be infected
by a topological phase nearby in phase space, leading to
anomalous edge behavior. We expect this proximity
effect to extend much beyond the DDW picture we used
here; anomalous surface properties are expected in any
D-dimensional ordered phase in proximity to a topological
paramagnet. The anomalous behavior on the symmetry-
broken side can also be understood as a consequence of the
anomalous character of the nearby quantum phase tran-
sition to the topological paramagnet [42–44]. Such sig-
natures could also be helpful when “prospecting” for a spin
liquid in the phase diagram of a candidate spin liquid
material which is magnetic at low T.
In our one-dimensional (1D) example, the “anomalous

surface behavior” described above actually led to a useful
resource: an edge spin with extremely long coherence.
Unlike the low-T results, which we expect to be general
properties of proximate-SPT phases, the high-T protection
is arguably much more model dependent. It indeed relies on
a combination of the prethermal physics described in
Refs. [19,20] with the concept of symmetry protection
which underlies SPT phases: no symmetry-respecting
operator can flip the edge spin without changing of
Uð1Þ sector, whose value is protected for an exponentially
long time. We surmise that combining 1D SPT parent
Hamiltonians with prethermalization should provide a

(a) (c)

(d)

(e)

FIG. 4. (a) Autocorrelation C∞ðtÞ at x ¼ 1 and T ¼ ∞ under OBC and varying system size. C∞ðtÞ remains close to one for a time τ
until it drops to its thermal value of 0, and τ increases exponentially with system size until its saturation. (b) The same autocorrelation
C∞ðtÞ under various conditions on 14 sites. “Edge” is same as in the main panel, “bulk” corresponds to σzL=4, “PBC” corresponds to
periodic boundary conditions, and “No Sym” corresponds to a system where the Z2 × Z2 symmetry was broken explicitly with edge
perturbations σx0τ

z
1 and σy0τ

z
1. (c) Histogram of the differences in adjacent energy levels showing the nonintegrability of the model and

(d) normalized density of states in the Z2 × Z2 even/even sector on 16 spins. (e) Coherence time for x ¼ 1. Here J ¼ 1.57 and B ¼ 8.42
in (a)–(d). Numerical details are given in the Supplemental Material [40].
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systematic way to find new models with long edge
coherence at all temperatures.
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