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We study the work cost of processes in quantum fields without the need of projective measurements,
which are always ill defined in quantum field theory. Inspired by interferometry schemes, we propose a
work distribution that generalizes the two-point measurement scheme employed in quantum thermody-
namics to the case of quantum fields and avoids the use of projective measurements. The distribution is
calculated for local unitary processes performed on Kubo-Martin-Schwinger (thermal) states of scalar
fields. Crooks theorem and the Jarzynski equality are shown to be satisfied for a family of spatiotemporally
localized unitaries, and some features of the resulting distributions are studied as functions of temperature
and the degree of localization of the unitary operation. We show how the work fluctuations become much
larger than the average as the process becomes more localized in both time and space.
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Introduction.—At microscopic scales average quantities
no longer characterize completely the state of a system or
the features of a thermodynamic process. There, stochastic
or quantum fluctuations become relevant, being of the same
order of magnitude as the expectation values [1–3]. It is
therefore important to develop tools that allow us to study
the properties of these fluctuations to fully understand
thermodynamics at the small scales.
One of the best studied quantities in this context is work

of out-of-equilibrium processes, and its associated fluctua-
tions. The notion of work is an empirical cornerstone of
macroscopic equilibrium thermodynamics. However, work
in microscopic quantum scenarios is a notoriously subtle
concept (e.g., it cannot be associated to an observable [4]),
and although there is no single definition of work distri-
butions and work fluctuations in quantum theory, several
possibilities have been proposed (see, e.g., Ref. [5]).
Perhaps the most established notion of work fluctuations
is that defined through the two-point measurement (TPM)
scheme [6,7], where the work distribution of a process is
obtained by performing two projective measurements of the
system’s energy, at the beginning and at the end of the
process. The TPM formalism defines a work distribution
with a number of desirable properties: it is linear on the
input states, it agrees with the unambiguous classical
definition for states diagonal in the energy eigenbasis,
and it yields a number of fluctuation theorems in different
contexts [1,7,8].
An important caveat of this definition is that it cannot be

straightforwardly generalized to processes involving quan-
tum fields: projective measurements in quantum field
theory (QFT) are incompatible with its relativistic nature.
They cannot be localized [9], they can introduce ill defined

operations due to UV divergences and, among other serious
problems, they enable superluminal signaling even in the
most innocent scenarios [10]. For these reasons, it has been
strongly argued that projective measurements should be
banished from the formalism of any relativistic field theory
[10–12]. However, quantum fields are certainly subject to a
wealth of thermodynamic and nonequilibrium phenomena,
and as such it should be possible to define an operationally
meaningful work distribution, potentially different from the
standard TPM scheme. One avenue to build such a work
distribution is through the ability to operate on quantum
fields through locally coupling other systems, such as, e.g.,
atoms or particle detectors. This allows the performance of
measurements on the field that are well defined [13] and
physically meaningful [14]. Thus, whichever definition we
construct for the work distribution, it should be based on
such physically attainable localized measurements, and
should not rely on projective measurements as previous
works attempted (e.g., Ref. [15]).
In recent works [16,17], it was shown that the complete

work distribution given by the TPM scheme for a finite
dimensional system can be measured by performing
measurements on an auxiliary qubit, in what is called a
Ramsey interferometric scheme. This was experimentally
implemented in Ref. [18]. Inspired by this idea, we propose
a definition of work distributions in quantum fields based
on the Ramsey scheme which is in fact well defined for a
QFT despite the impossibility of projective measurements.
We show that this new distribution satisfies the usual
Jarzynski and Crooks theorems when the field is initially
in a Kubo-Martin-Schwinger (KMS) state (the states that
generalize thermal Gibbs states for quantum fields [19,20])
and evolves through a spatially localized unitary. This

PHYSICAL REVIEW LETTERS 122, 240604 (2019)

0031-9007=19=122(24)=240604(6) 240604-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.122.240604&domain=pdf&date_stamp=2019-06-21
https://doi.org/10.1103/PhysRevLett.122.240604
https://doi.org/10.1103/PhysRevLett.122.240604
https://doi.org/10.1103/PhysRevLett.122.240604
https://doi.org/10.1103/PhysRevLett.122.240604


shows that such a work distribution is well defined for
fields even though projective measurements are not.
We also obtain analytical expressions for the variance
and the average of the work distribution for some useful
simple cases of local field operations. Finally, we discuss
how, through either Crooks or Jarzynski’s theorems, the
proposed distribution can be used as a new way of
computing ratios of partition functions between field
theories, potentially yielding simpler approaches to the
problem than path integral methods.
TPM work distributions and Ramsey scheme.—Consider

a quantum field initially in an equilibrium KMS state ρ̂ of
temperature β−1, which is driven out of equilibrium by a
time-dependent Hamiltonian ĤðtÞ, turned on during an
interval ½0; T�. The work distribution quantifies the work
cost of the unitary process on the field ÛðT; 0Þ generated by
the Hamiltonian ĤðtÞ.
As discussed above, projective measurements cannot be

implemented in quantum fields because they are incom-
patible with relativistic causality [10–12]. Thus, the TPM
scheme cannot be readily applied to processes involving
quantum fields. However, the Ramsey scheme, which only
involves interactions with a low-dimensional ancilla, pro-
vides an indirect way to gather the same work statistics. For
completeness, let us review the TPM scheme to define a
work distribution. The steps are the following.
1. A projective measurement of Ĥð0Þ is done on the

initial state ρ̂. This yields the energy measured as Ei and the
postmeasurement state jEiihEij.
2. Unitary evolution of the postmeasurement state

according to the unitary associated to the process ÛðT; 0Þ.
3. A projective measurement of ĤðTÞ is done on

ÛðT; 0ÞjEiihEijÛ†ðT; 0Þ, returning the value E0
j.

The possible values of the work wðijÞ are defined as
wðijÞ ¼ E0

j − Ei. The work probability distribution is

PðWÞ ¼
X
ðijÞ

δðW − wðijÞÞhEijρjEiijhE0
jjÛðT; 0ÞjEiij2; ð1Þ

with a corresponding characteristic function

P̃ðμÞ ¼
Z

PðWÞeiμWdW ¼ heiμWi: ð2Þ

It is also important to define a “time-reversed” process,
in which the driving has the opposite temporal order. That
is, 1. a projective measurement is done on the basis of
ĤðTÞ, yielding E0

j;rev, 2. the unitary evolution ÛrevðT; 0Þ
corresponding to the driven Hamiltonian ĤðT − tÞ with
t ¼ ½0; T� is implemented, 3. a final projective measure-
ment in the basis of Ĥð0Þ is implemented returning the
value Ei;rev.

The corresponding work probability distribution is

PrevðWÞ ¼
X
ðijÞ

δðW − wðjiÞ
rev Þ

× hE0
j;revjρjE0

j;revijhEi;revjÛðT; 0ÞjE0
j;revij2; ð3Þ

where wðjiÞ
rev ¼ Ei;rev − E0

j;rev. We can also define
P̃revðμÞ ¼

R
PrevðWÞeiμWdW.

In the original proposals [16,17], Ramsey interferometry
was employed to probe the TPM work distributions as
follows: the system of interest is coupled to an auxiliary
qubit, which engages the system in an evolution conditional
on whether the qubit is excited or not. By preparing the
qubit in a superposition of ground and excited states, this
process transfers the data about the characteristic function
of the TPM work distribution to the state of the qubit. This
is thus a rather “noninvasive” procedure to acquire statistics
which otherwise would require projective measurements.
The steps are as follows.
1. The system and the auxiliary qubit are prepared in the

product state ρ̂ ⊗ j0ih0j, where ρ̂ is the state of the
quantum system at the beginning of the thermodynamic
process.
2. A Hadamard gate is applied on the qubit.
3. The system and the auxiliary qubit evolve unitarily

according to

M̂μ ¼ ÛSe−iμĤð0Þ ⊗ j0ih0j þ e−iμĤðTÞÛS ⊗ j1ih1j: ð4Þ

Here ÛS is the unitary acting on the system between times 0
and T.
4. A second Hadamard is applied to the qubit.
At the end of this procedure, we obtain that the reduced

state of the auxiliary qubit is ρ̂μ ¼ 1
2
f1þ Re½P̃ðμÞ�σ̂zþ

Im½P̃ðμÞ�σ̂yg. By iterating this process over many values of
μ and performing state tomography, the work distribution
of any unitary process on a system of interest can then be
constructed without projective measurements.
Work distributions for thermal states of quantum

fields.—We will now design a version of the Ramsey
scheme to obtain a characteristic function that defines
the work distribution of a process, which will be a localized
unitary on a scalar field. Consider a scalar quantum field
ϕ̂ðt; xÞ written in terms of plane-wave modes as

ϕ̂ðt; xÞ ¼
Z

d3k

ð2πÞ3=2 ffiffiffiffiffiffiffiffi
2ωk

p ðâkeik·x þ â†ke
−ik·xÞ; ð5Þ

where k · x ≔ k · x − ωkt, ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
, and

½âp; â†q� ¼ δð3Þðp − qÞ. We take the field to be in a KMS
state [19,20] of inverse temperature β, ρ̂β. KMS thermality
generalizes Gibbs’s notion of thermality to cases where,
due to the dimensionality of the Hilbert space, Gibbs
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thermal states are not well defined. This is the case of
QFTs, where usually the partition function is ill defined.
More formally, for a KMS state ρ̂β (with inverse KMS
temperature β) with respect to time translations generated
by a Hamiltonian Ĥ, the two-point correlator W ρ̂ðτ; τ0Þ ≔
Trfρ̂ ϕ̂½tðτÞxðτÞ�ϕ̂½tðτ0Þxðτ0Þ�g satisfies the following two
conditions (see, among many others, Refs. [21,22]):
1. Wρðτ; τ0Þ ¼ WρðΔτÞ (stationarity), 2. WρðΔτ þ iβÞ ¼
Wρð−ΔτÞ (C antiperiodicity).
Notice that the vacuum state is a KMS state with β → ∞,

that is, zero temperature.
We proceed to characterize the localized unitary we

apply on the field. For a free scalar field, any local
observable is a linear combination of the field amplitude
ϕ̂ and its canonical momentum π̂. For concreteness, in this
Letter, we focus on unitaries acting on the field that are
generated by Hamiltonians of the form

ĤϕðtÞ ¼ Ĥ0 þ λχðtÞ
Z
R3

d3xFðxÞϕ̂ðt; xÞ ¼ Ĥ0 þ ĤIðtÞ;

ð6Þ

in the interaction picture, where Ĥ0 is the free Hamiltonian
of the field, and χðtÞ and FðxÞ are the switching and
smearing functions, respectively. We assume that the
switching function has strong support in a finite region
[23] and, without loss of generality, we take the strong
support of the switching function to be in the interval ½0; T�,
where 0 and T are the starting and ending times of the
process under study. In other words, the field evolves freely
(or very approximately freely if the switching function is
not strictly compact) except for the interval ½0; T�, where we
perform a spatiotemporally localized unitary operation on
the support of FðxÞ. By doing this, we obtain that Ĥϕð0Þ ¼
ĤϕðTÞ ¼ Ĥ0, which simplifies our analysis. This is a
particular unitary operation on a localized field observable
(representing a multimode displacement operation [24]).
Considering localized unitaries generated by a smeared π̂ is
completely analogous, so this particular case is easily
generalizable to all localized unitaries on a free field.
At the beginning of the Ramsey scheme, the state of the

field-qubit system is ρ̂ ¼ ρ̂β ⊗ j0ih0j. Applying the
Hadamard on the qubit results in ρ̂0 ¼ ρ̂β ⊗ jþihþj. We
apply the controlled unitary evolution

M̂μ¼ ÛϕðTÞe−iμĤ0 ⊗ j0ih0jþe−iμĤ0ÛϕðTÞ⊗ j1ih1j; ð7Þ

where ÛϕðTÞ is the unitary on the field generated by the
Hamiltonian Eq. (6), given by

ÛϕðTÞ ¼ T exp

�
−iλ

Z
R
dtχðtÞ

Z
R3

d3xFðxÞϕ̂ðt; xÞ
�
; ð8Þ

where T represents time ordering. Assuming that the
coupling λ is small enough, we can obtain an approximate
expression for ÛϕðTÞ through a Dyson expansion:
ÛϕðTÞ ¼ 1þ Ûð1Þ þ Ûð2Þ þOðλ3Þ, where in the interac-
tion picture

Ûð1Þ ¼ −iλ
Z
R
dtĤIðtÞ;

Ûð2Þ ¼ −λ2
Z

∞

−∞
dt

Z
t

−∞
dt0ĤIðtÞĤIðt0Þ: ð9Þ

The reduced state of the qubit at time T can be written as

ρ̂T ¼ ρ̂ð0ÞT þ ρ̂ð1ÞT þ ρ̂ð2ÞT þOðλ3Þ, where ρ̂ðiÞT is proportional
to λi (see Ref. [25] for details).
Tr½σ̂zρ̂μ� and Tr½σ̂yρ̂μ� give the real and imaginary parts,

respectively, of the characteristic function Eq. (2). Using
the KMS two-point correlator (see, e.g., Ref. [26]), we can
write the characteristic function for this process as

P̃ðμÞ ≔ 1þ λ2
Z

d3k
ð2πÞ32ωkðeβωk − 1Þ jχ̃ðωkÞj2jF̃ðkÞj2

× ðeβωk þ 1Þ½cosðμωkÞ − 1�

þ iλ2
Z

d3k
ð2πÞ32ωk

jχ̃ðωkÞj2jF̃ðkÞj2 sinðμωkÞ: ð10Þ

By taking the inverse Fourier transform of this character-
istic function, the work probability distribution can be
obtained. When the smearing function is spherically
symmetric and the field is massless, it is

PðWÞ ¼ ð1 − pÞδðWÞ þ λ2

2π
jχ̃ðWÞj2jF̃ðWÞj2W

×

�
eβW

eβW − 1
ΘðWÞ þ 1

1 − e−βW
Θð−WÞ

�
; ð11Þ

where p ≔
R
W≠0 dWPðWÞ and ΘðWÞ is the Heaviside

function. Note that the case of the vacuum state of the
field can be obtained by taking the well-defined limit
β → ∞ on Eq. (11).
In Fig. 1, we plot the work distribution for the unitary

Eq. (8) (omitting the deltas at the origin) acting on initial
KMS states with β ¼ 1 and the vacuum state (β → ∞), for
a particular choice of the switching and smearing functions.
As shown in Fig. 1, for the nonzero temperature states,
there is a nonzero probability of the field doing work
against the performer of the unitary, W < 0. However, the
probability of W > 0 is larger than the probability of
W < 0, as granted by the second law. For the vacuum
case the performer of the unitary always has to work. As the
duration of the process goes to infinity, the probability
distribution gets concentrated around zero and the negative
part of the distribution vanishes, as expected in the
quasistatic limit.
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From Eq. (10), we can now calculate the moments of
PðWÞ to gain some insight about the energy cost of
applying a localized unitary to a quantum field. Since
P̃ðμÞ ¼ heiμWi, the kth moment is

hWki ¼ i−k
dk

dkμ
P̃ðμÞjμ¼0: ð12Þ

From Eqs. (12) and (10), we obtain that the first and
second moments of the work distribution for the vacuum
are

hWi ¼ λ2
Z

d3k
ð2πÞ32 jχ̃ðωkÞj2jF̃ðkÞj2; ð13Þ

hW2i ¼ λ2
Z

d3k
ð2πÞ32 jχ̃ðωkÞj2jF̃ðkÞj2ωk; ð14Þ

obtaining σ2W ¼ hW2i − hWi2 ¼ hW2i þOðλ4Þ for the
work variance.
An interesting observation is that, for the vacuum, if we

consider unitaries that are very localized in time and space,
both χ̃ðωkÞ and F̃ðkÞ will be wide in frequency space,
which means that the work variance will become larger than
the expectation value, making the variance of the work
increasingly significant as the operation on the field
becomes increasingly localized in both time and space.
For an arbitrary KMS state of inverse temperature β, the

value for hWi coincides with that of the vacuum (and
hWi ≥ 0 as expected from the passivity of KMS states). In
fact, since the imaginary part of the characteristic function

does not depend on β, none of the odd-numbered moments
will depend on temperature. For the variance, we have

σ2β ¼
λ2

2

Z
d3k
ð2πÞ3

eβωk þ 1

eβωk − 1
jχ̃ðωkÞj2jF̃ðkÞj2ωk þOðλ4Þ;

ð15Þ

showing that it monotonically increases with temperature.
We can also check that the Crooks theorem [27] is

satisfied for these localized unitaries. The theorem states
that for a process in which the Hamiltonian evolves from
Ĥð0Þ ¼ Ĥ1 to HðTÞ ¼ Ĥ2, together with its time-reversed
process, we have that

PðWÞ
Prevð−WÞ ¼ eβW

Z2

Z1

; ð16Þ

where Z1, Z2 are the partition functions of the thermal
states of Ĥðt1Þ and Ĥðt2Þ and the initial state must be
thermal in both processes, with the corresponding
Hamiltonian.
In our example, P̃ðμÞ ¼ P̃revð−μþ iβÞ from Eq. (10),

and since Ĥð0Þ ¼ ĤðTÞ ¼ Ĥ0, Z2=Z1 ¼ 1. Thus, by tak-
ing the inverse Fourier transform we recover Eq. (16).
Finally, the Jarzynski equality he−βWi ¼ 1, which is
implied from the Crooks theorem, is satisfied. This can
be seen just by evaluating the characteristic function
at μ ¼ iβ.
A nonperturbative example.—The examples in the pre-

vious section used small perturbations acting on thermal
states only for calculational convenience. However, the
work distribution we introduced is not limited to perturba-
tive scenarios. Indeed, one of the main aims of fluctuation
theorems is precisely to go beyond the regime of small
perturbations by providing relations that hold for states
arbitrarily far from equilibrium.
To illustrate this, we consider an intense unitary applied

on the field very fast on a spatial distribution given by FðxÞ.
In this case, χðtÞ ¼ δðtÞ, and the unitary in Eq. (8) becomes
ÛϕðTÞ ¼ exp½−iλ R d3xFðxÞϕ̂ðxÞ�. Following the Ramsey
scheme protocol, and using the nonperturbative techniques
detailed in Ref. [28], it is possible to obtain closed forms
for the characteristic function of the work distribution,
which is [25]

P̃ðμÞ ¼ exp
�
λ2

Z
d3k

ð2πÞ32ωk
jF̃ðkÞj2ðeiμωk − 1Þ

�
: ð17Þ

Choosing a normalized Gaussian centered at zero as
smearing, and changing to polar coordinates (since the
smearing is spherically symmetrical), yields for the char-
acteristic function (see Ref. [25] for details)

Delta

1

1 0 1 2 3
W

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030
P

FIG. 1. Work distribution for three cases (a) a localized unitary
acting on the vacuum, (b) the same localized unitary acting on
KMS states of finite temperature, and (c) delta-coupling unitary
acting on the vacuum. For (a) and (b), the switching function is of
the form χðtÞ ¼ expf−½t − ðT=2Þ�2ðT2=72Þ−1g, with T ¼ 1, and
FðxÞ is a normalized Gaussian distribution with σ ¼ 1. Note that
the length of the interval ½0; T� is 12 times the standard deviation
of the switching function. For (c), FðxÞ is a normalized Gaussian
distribution with σ ¼ 1.
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P̃ðμÞ ¼ e−λ
2=8π2σ2e−fλ2e−μ

2=4σ2 ½2eμ2=4σ2μσDðμ=2σÞ−2eμ2=4σ2σ2−i ffiffi
π

p
μσ�g=ð4π2Þ4σ4 ; ð18Þ

where DðxÞ is the Dawson integral [29], defined as
DðxÞ ≔ expð−x2Þ R x

0 expðy2Þdy. By taking the inverse
Fourier transform numerically, we see how the Crooks
theorem Eq. (16) is also satisfied in this case, as PðWÞ ¼ 0
for W < 0 (note that this is the Crooks theorem for β → ∞
when the forward and reverse processes are identical), as
we show in Fig. 1.
Conclusion.—The notion of work distributions for local-

ized operations on quantum fields is challenging because
(a) energy eigenstates are not localized and (b) projective
measurements cannot be allowed in a relativistic quantum
theory [10–12]. The TPM scheme employed in the liter-
ature [5] is hence ill defined in QFT, but we have shown
that one can still make sense of it via the Ramsey scheme
that was designed to measure TPM work distributions
[16,17]. We propose a well-defined work distribution in
QFT that, unlike Ref. [15], does not require the existence of
projective measurements and does not inherit any compli-
cations from the fact that energy eigenstates are nonlocal.
We have shown that this work distribution satisfies both the
Jarzynski equality and the Crooks theorem for KMS states
for a general class of perturbative unitary actions arbitrarily
localized in space and time. We also explicitly showed how
the Crooks theorem is satisfied for a general class of fast
nonperturbative actions on the field vacuum generated by
localized observables. These are limited cases. Showing
that the Crooks and Jarzynski theorems are satisfied in the
most general case is a nontrivial problem. It is known that
for nonrelativistic quantum systems, unitary operations
acting on Gibbs thermal states implies satisfaction of these
theorems [1,30], but showing whether this is true for all
unitaries on all KMS states of fully relativistic field theories
will require advanced tools from algebraic quantum field
theory [13,31]. This is an interesting question that should
be addressed elsewhere but is out of the scope of this Letter.
The proposed work distribution also suggests experi-

ments where it can be measured. A potential setup would be
a quantum field in a superconducting transmission line to
which we couple superconducting qubits. The control in
time that is required for an experiment implementing the
example that we present in the Letter can be achieved with
the switchable coupling that has been experimentally
realized in Ref. [32]. The fact that the Ramsey scheme
can be implemented in superconducting circuits was shown
in, e.g., Ref. [33], and the fact that a fully relativistic QFT
setup is implementable in superconducting circuits in those
regimes can be seen, e.g., in Refs. [34–36].
An interesting observation is that the work distribution

that we define can be used to compute ratios of partition
functions of field theories. Indeed, we can invert the
relationship Eq. (16) and write

Z2

Z1

¼ e−βW
PðWÞ

Prevð−WÞ : ð19Þ

This can, in fact, be more simply obtained from Jarzynski’s
equality:

Z2

Z1

¼ he−βWi: ð20Þ

This potentially provides a new way to compute these
ratios, analytically, numerically, or even experimentally, by
measuring the work distribution through a Ramsey scheme.
These ratios are remarkably difficult to calculate in QFT
through path integrals, which makes new methods to access
it a research avenue that merits exploration. The idea of
calculating the ratio of partition functions from a non-
equilibrium process has been used in very different contexts
(see, e.g., Refs. [37–39]).
With our framework, we have been able to obtain

expressions for thework fluctuations associated to a process
generated by a local Hamiltonian on a scalar field. We
observe that the work fluctuations increase with temper-
ature, and that they dominate the average work cost as the
process becomes increasingly localized in both time and
space. Also, we find that for KMS states of finite temper-
ature, there is a nonzero probability of the field doing work
when the process is of finite duration. It should be interesting
to see how the work distribution relates to the variation of
internal energy in the field in adiabatic and nonadiabatic
processes. The internal energy of the field is given by the
renormalized stress-energy density, and exploring the con-
nection between the stress-energy density deposited (or
extracted) from the field and the work distributions of the
processes where the energy is deposited can shed some light
into the thermodynamics of local processes in quantum field
theory, a particularly relevant aspect of phenomena ranging
from entanglement harvesting [40–43], quantum energy
teleportation [44], or the Unruh and Hawking effects [45].
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