
 

Partial Fermionization: Spectral Universality in 1D Repulsive Bose Gases

Quirin Hummel,* Juan Diego Urbina, and Klaus Richter
Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany

(Received 4 December 2018; revised manuscript received 26 March 2019; published 17 June 2019)

Because of the vast growth of the many-body level density with excitation energy, its smoothed form
is of central relevance for spectral and thermodynamic properties of interacting quantum systems. We
compute the cumulative of this level density for confined one-dimensional continuous systems with
repulsive short-range interactions. We show that the crossover from an ideal Bose gas to the strongly
correlated, fermionized gas, i.e., partial fermionization, exhibits universal behavior: Systems with very few
and up to many particles share the same underlying spectral features. In our derivation we supplement
quantum cluster expansions with short-time dynamical information. Our nonperturbative analytical results
are in excellent agreement with numerics for systems of experimental relevance in cold atom physics,
such as interacting bosons on a ring (Lieb-Liniger model) or subject to harmonic confinement. Our method
provides predictions for excitation spectra that enable access to finite-temperature thermodynamics in
large parameter ranges.
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The huge progress in cold atom physics has enabled
precision experiments which allow us to confine, control,
and study ensembles of atoms with particle numbers
ranging from very few [1–5] to nearly macroscopically
many [6–9]. The high control over parameters, trapping to
low dimensions, and tunability of interactions has lead to a
synergetic understanding of highly correlated many-body
(MB) systems [10], in many cases based on theories of one-
dimensional integrable models [11,12] and correspond-
ingly tailored experiments [13,14]. However, in situations
deviating from integrability (see, e.g., Refs. [15–19]) the
theoretical treatment of systems with an intermediate
number N of interacting identical particles is particularly
hard, especially when the observed spectral, thermo-
dynamic, or dynamical properties involve highly excited
multiparticle states.
The conceptual challenges are numerous: First, systems

with fixed N require a canonical treatment, in particular
when approaching the few-body regime, where grand
canonical approaches often fail [20]. Second, due to strong
inter-particle correlations that can experimentally be
pushed up to the limit of fermionization in Bose gases
[3,7,8,21,22], and especially for small N, mean-field
approaches or more generally 1=N expansions get prob-
lematic. Elaborate MB techniques allow for calculating
ground and low excited states of such interacting multi-
particle systems with high precision (see, e.g.,
Refs. [23,24]). However, these methods reach their limits
when increasing N or the degree of excitation since this
implies vastly growing Hilbert space dimensions.
This goes along with a close to exponential increase of

the MB density of states (DOS) with excitation energy for

continuous N-particle systems, even in the 1D case. The
universal Bethe law [25,26] and variants [27,28] for
sufficiently low-lying excitations in large-N fermionic
systems represent a famous example in nuclear physics.
There, the effect of (residual) interactions is merely a
broadening of the otherwise highly degenerate noninter-
acting MB spectrum [29,30], while for small to intermedi-
ate N interactions have nontrivial effects and the Bethe law
generally fails [31,32].
Nonetheless, the spacing between MB levels as well as

the associated fluctuations tend to zero such that individual
highly excited MB levels are usually no longer resolvable.
Hence the (locally) energy-averaged, smooth MB DOS
ρðNÞðEÞ gains particular relevance [33]. In particular it plays
the central role for computing thermodynamic equilibrium
properties at finite temperature. Beyond that, ρðNÞðEÞ is a
key ingredient to nonequilibrium quantum work statistics
that has drawn much attention lately [36–39], not least
due to a recently revealed connection to information
scrambling [40].
This calls for developing genuinely interacting MB

techniques specifically devised to directly compute the
smooth DOS, thereby circumventing the intricate [41–44]
or simply impossible calculation of individual (highly)
excited MB levels which requires additional information
that is afterwards smoothed out anyway.
Similar to the single particle case [45–48], a smooth MB

DOS corresponds to and requires dynamical information
from MB quantum propagation on finite time scales
only. Invoking such short-time information in a quantum
cluster expansion (QCE) [49–51] implies, as we will
show, that interaction effects in the smooth DOS arise
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nonperturbatively from universal cluster kernels dressed
with terms depending on the confinement potential, required
to be a homogeneous function. Specifically, we consider not
directly the MB DOS ρðNÞðEÞ but the (smooth) MB level
counting function N ðEÞ ¼ R

E
0 dE0ρðNÞðE0Þ, depicted in

Fig. 1 for a harmonically trapped Bose gas. N ðEÞ exhibits
interaction-dependent characteristic horizontal shifts Δα

indicating what we call partial fermionization. We will
analytically show that these shifts, and therebyN and ρðNÞ,
follow with high accuracy N-independent universal laws,
i.e., broad classes of interacting bosonic systems ranging
from very few to many particles possess equal spectral
features. Remarkably, these robust features are reminiscent
of the spectral shifts in the famous solvable Calogero-
Sutherland models [52,53] which admit an interpretation
in terms of fractional exclusion statistics [54–56].
We first outline the main steps of our QCE for the

canonical partition function providing the basis for our
further (asymptotic) analysis to derive our main result, a
universal law for partial fermionization.
Canonical partition function.—The MB DOS ρðNÞ

� ðEÞ of
a system of N identical quantum particles (“�” denoting
bosons and fermions) is related to the canonical partition

function ZðNÞ
� ðβÞ through the inverse Laplace transform

ρðNÞ
� ðEÞ¼L−1

β ½ZðNÞ
� ðβÞ�ðEÞwith β¼1=ðkBTÞ. Furthermore,

ZðNÞ
� ðβÞ ¼ Tr�KðNÞðt ¼ −iℏβÞ is the trace over the propa-

gator KðNÞ for N distinguishable particles in the properly
(anti-)symmetrized basis.
For N noninteracting particles of mass m, each with

coordinates q, confined by a homogeneous potential
UðqÞ ¼ wμUðq=wÞ, it can be expressed in closed form
[31,57],

ZðNÞ
0;�ðβÞ ¼

XN
l¼1

zðN;dÞ
�;l

�
Veff

λdT

�
l
; ð1Þ

with universal constants zðN;dÞ
�;l , physical dimension D, and

effective dimension d¼D½1þð2=μÞ�. Setting ℏ2=ð2mÞ ¼ 1,
the thermal wavelength is λT ¼ ffiffiffiffiffiffiffiffi

4πβ
p

and the effective
volume is Veff ¼ ð4πÞD=μ

R
dDq exp½−UðqÞ�. The case

without external potential is included as μ → ∞, then
d ¼ D and Veff equals the physical volume VD.
Quantum cluster expansion.—The noninteracting part

KðNÞ
0 of the propagator factorizes into single-particle (SP)

propagators, see Fig. 2(a). A contribution to ZðNÞ
0;� corre-

sponding to a permutation P is a product of cluster terms,
resembling the decomposition of P into cycles [62]. Using
the semigroup property of the SP propagator and identify-
ing qnþ1 ≡ q1 ¼ q, each cycle involving a subset of n
particles [see Fig. 2(b)] yields the amplitude AnðtÞ ¼R
dDqKð1Þ

0 ðq;q; ntÞ. In line with our major assumption of

short-time propagation we can use [31] Kð1Þ
0 ðq;q; tÞ ≃

exp½−ði=ℏÞUðqÞt�Kð1Þ
freeðq;q; tÞ where Kfree stands for

unconfined propagation. The full contribution to ZðNÞ
0;� of

a permutation is then ANð−iℏβÞ ¼
Q

n∈N Anð−iℏβÞ, in
terms of the multiset N ¼ fn1; n2;…; njNjg of cycle
lengths, see Fig. 2(c). Further evaluation of these ampli-
tudes eventually yields the explicit result Eq. (1) [31,57].
The implementation of interaction effects begins with a

cluster expansion [49–51] of KðNÞ to first order in the
interaction by decomposing the full two-body propagator

Kð2Þ ¼ Kð2Þ
0 þ ΔKð2Þ

α into Kð2Þ
0 and nonperturbative inter-

action contributions ΔKð2Þ
α where α is an energy associated

with the coupling strength [63]. To calculate interaction
effects we choose all pairs fk; lg of particles and replace

Kð1Þ
0 ðqPðkÞ;qk; tÞKð1Þ

0 ðqPðlÞ;ql; tÞ in AN by the interaction

term ΔKð2Þ
α (ðqPðkÞ;qPðlÞÞ; ðqk;qlÞ; t), see Fig. 2(d). The

FIG. 1. Many-body level counting function for six interacting
bosons in a harmonic trap (spacing ℏω) for different contact
interaction strengths α. Numerically exact results for N ðEÞ
(staircases) exhibit characteristic shifts Δα in E towards the limit
α → ∞ of full fermionization. These shifts carry universal
features and are quantitatively explained by our theory (solid
lines) based on Eqs. (8) and (11). Dotted lines denote analytical
QCE-based approximations [Eq. (5)] invoking the limiting cases
of weak and strong α, see main text.

(a)

(d)

(b)

(e)

(c)

(f)

FIG. 2. Leading-order contributions to the quantum cluster
expansion. (a) SP propagator Kð1Þ

0 ðqf;qi; tÞ; (b) contribution An
from a single cycle (here n ¼ 3); (c) specific clustering
yielding AN (here N ¼ f1; 1; 2; 4g; N ¼ 8); (d) interacting part

ΔKð2Þ
α (ðqf

1 ;q
f
2Þ; ðqi

1;q
i
2Þ; t) of the two-body propagator; (e),(f)

examples for intra- and inter-cycle contributionsAintra
n1;n2 andA

inter
n1;n2

with n1 ¼ 3, n2 ¼ 2. A diagram is evaluated as the product of all

SP and interacting two-body components Kð1Þ
0 and ΔKð2Þ

α after
spatial integration over all (internal) points.
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interaction can link two particles involved in either the
same [see Fig. 2(e)] or in two different cycles [see Fig. 2(f)]
of P, referred to as intra- and inter-cycle contributions
Aintra=inter

n1;n2 where n1, n2 denotes the distribution of the n ¼
n1 þ n2 particles. Evaluation of the diagram classes in
Figs. 2(e) and 2(f) yields

ZðNÞ
α;� ¼ ZðNÞ

0;� þ
XN
n¼2

ð�1ÞnZðN−nÞ
0;�

Xn−1
n1¼1

A�
n1;n−n1 ð2Þ

with amplitudes of the form

A�
n1;n2 ¼

1

2
½Ainter

n1;n2 �Aintra
n1;n2 � ¼

Veff

λdTn
d=2 a

�
n1;n2ðβαÞ; ð3Þ

defining the interaction kernels a�n1;n2ðβαÞ, see below.
The philosophy behind cluster expansions implies that

the form Eq. (3) of amplitudes is generic for arbitrary short-
range interactions [64]: The main contribution to the
n-fold integrals involved stems from the region where all
n particles are close to each other, allowing us to extend all
integrals over relative coordinates to infinity. Hence the
a�n1;n2ðβαÞ do not depend on the external potential, a key
feature of our approach that also generalizes to higher
order, i.e., clusters involving n-body corrections. Instead,
only the center of mass is subject to UðqÞ, thus yielding the
effective system size Veff as a prefactor in Eq. (3). In view
of Eqs. (1)–(3) this yields the entire QCE partition function

ZðNÞ
α;�ðβÞ ¼

XN
l¼1

½zðN;dÞ
�;l þ ΔzðN;dÞ

�;l ðβαÞ�
�
Veff

λdT

�
l

ð4Þ

with interaction-related terms ΔzðN;dÞ
�;l ðβαÞ given by the

kernels, i.e., to first order, a�n1;n2ðβαÞ [57].
Correspondingly, the general QCE expression for the

central quantity N αðEÞ ¼
R
E
0 dE0ρðNÞðE0Þ is [57,64], to

arbitrary order,

N αðEÞ¼
XN
l¼1

�
zðN;dÞ
�;l

Γðld
2
þ1ÞþgðN;dÞ

�;l

�
E
α

��
Vl
eff

�
E
4π

�
ld=2

: ð5Þ

It features the same polynomial structure in VeffEd=2 as its

noninteracting counterpart, while the gðN;dÞ
�;l add a functional

dependence on E=α to the coefficients given by the
interaction kernels, i.e., to first order, a�n1;n2ðβαÞ.
Contact interaction.—For explicit calculations and moti-

vated by the central importance for quasi-1D cold atom
systems [10,65,66] we consider Hamiltonians

Ĥ ¼
XN
i¼1

�
−

∂2

∂q2i þ UðqiÞ
�
þ

ffiffiffiffiffiffi
8α

p X
i<j

δðqi − qjÞ ð6Þ

of N interacting bosons with coordinates qi in 1D. One
obtains [57] explicit analytical expressions for the kernels
aþn1;n2ðβαÞ in Eq. (3). Closed explicit expressions for the

gðN;dÞ
�;l ðE=αÞ in Eq. (5) follow for the prominent 1D cases
of UðqÞ ¼ 0 (d ¼ 1), harmonic confinement (d ¼ 2), and
linear potential wells (d ¼ 3) [57].
Before addressing representative cases we note that the

QCE [Eqs. (4) and (5)], evaluated to first order, although
devised for weak interaction, can also be applied to the
complementary regime of strong coupling [57] by means of
fermionization [67,68] due to an exact duality [69] of
strongly coupled bosons and weakly coupled spinless
fermions.
Harmonic confinement.—We first consider UðqiÞ ¼

ðℏωÞ2q2i =4, for which Veff ¼ 4π=ðℏωÞ, and compare in
Fig. 1 analytical QCE results (dotted lines) forN αðEÞ with
extensive numerical calculations (staircases) based on exact
diagonalization and hence restricted to roughly the first 40
excited MB levels for N ¼ 6. The first-order QCE, imple-
mented as weak- and dual strong-coupling expansions,
indeed is valid in the respective regimes. However,
for intermediate couplings (here α ≃ 2ℏω) it degrades.
Moreover, such deviations grow with increasing N calling
for an improved method that adequately treats intermediate
couplings.
Partial fermionization.—Interactions predominantly

cause characteristic shifts ofN αðEÞ towards larger energies
(as visible in Fig. 1). Presuming knowledge of the non-
interacting spectra, the shiftsΔα of individual levels contain
all information about the interacting spectra. We adopt this
reformulation of the problem to develop a method that
directly addresses these shifts on average. Our approach
further enables asymptotic considerations that strongly
simplify the MB problem and highlight the universality
behind partial fermionization.
For the interaction-induced energy shift at fixed N ,

Δα ≡ hEðnÞðαÞ − EðnÞð0Þin ≡ hEðnÞðαÞin − E0; ð7Þ

averaged over a bunch of individual MB levels EðnÞ we
propose, in a first-order implementation, the ansatz

Δα ≈ χðN;dÞðE=αÞΔðN;dÞ
∞ ðE0; VeffÞ; ð8Þ

where E ¼ E0 þ Δα is the shifted energy, separating the
Veff dependence from an α-dependent function χðN;dÞ, in
view of the notable structure of N α within QCE [Eq. (5)]
and corroborated by a general consistency argument
[57,64]. Δ∞ denotes the full “horizontal” shift (see
Fig. 1) between fermionized and noninteracting bosonic
levels for fixed N ≡ hnin ¼ N 0ðE0Þ. We find [57]

ΔðN;dÞ
∞ ≈ const × V−2=d

eff N ð2=d−1Þ=N: ð9Þ
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The α-dependent factor χ ∈ ½0; 1� in Eq. (8) continuously
interpolates between the free Bose gas χ → 0 and the fully
fermionized gas χ → 1, quantifying partial fermionization.
Most notably, the central function χðN;dÞðE=αÞ in Eq. (8) is
uniquely obtained from QCE [Eq. (5)] by matching

N αðEÞ ¼ N ¼ N 0ðE0Þ ¼ N 0ðE − ΔαÞ ð10Þ
in the regime Ed=2Veff ≫ 1 of weak quantum degeneracy,
where the first-order QCE becomes increasingly accurate.
For the lhs of Eq. (10) we apply QCE [Eq. (5)], while for
the rhs we use the result Eq. (1) for α ¼ 0, and implement
the shift Δα, Eq. (8), as an expansion around E in the small

parameterΔðN;dÞ
∞ =E ¼ OðE−d=2V−1

effÞ. Matching the next-to-

leading order OðVN−1
eff Þ in Eq. (10) fixes χðN;dÞðE=αÞ ∝

−gðN;dÞ
þ;N−1ðE=αÞ [57], which, remarkably, is fully determined

by two-body clusters for which the first-order QCE is exact.
A solution for N αðEÞ is achieved by determining the

partial fermionization for a given initial noninteracting
energy E0, reducing the problem to finding, in view of
Eq. (8), the root of

x ¼ χðN;dÞðE=αÞ ¼ χðN;dÞ½ðE0 þ xΔ∞Þ=α�: ð11Þ
This implicitly defines x ¼ χ as a function of E0, α, and N.
The method efficiently emulates the effect of higher-order
clusters in terms of the smallest ones, giving excellent
predictions (see solid curves in Fig. 1). While the presented
lowest-order version involves only two-body clusters it can
be pushed to second (and higher) order in a controlled way
[57,64] by extending the ansatz Eq. (8) to admit corrections
to χ in powers of ðEsc

0 Þ−d=2 [see Eq. (13) below]. Those
incorporate three-body (and larger) clusters that correct
for multiparticle collision effects in the deeply quantum
degenerate regime.
Asymptotics and universality.—An asymptotic analysis

[57] of χ andΔ∞ for large N further reveals the existence of
a specific finite limit, i.e., in first order,

x ≈ lim
N→∞

χðN;dÞðNϵ̃Þ ¼ 1 − ed=ð2ϵ̃Þerfc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d=ð2ϵ̃Þ

p
; ð12Þ

where ϵ̃ ¼ ½Esc
0 þ xΔsc

∞ðEsc
0 Þ�=αsc and, with neff ¼ N=Veff ,

Esc
0 ¼ E0

N
E−1; αsc ¼ αE−1; E ¼ 2πℏ2

m
n2=deff ; ð13Þ

implying a universal law for the partial fermionization,

χ ≈
N≫1

χðd; Esc
0 ; α

scÞ: ð14Þ
For systems with different N ≫ 1 it predicts that χ, and
hence N α, depend in the same peculiar way on α and
the energy per particle E0=N of the corresponding non-
interacting system, both appropriately scaled in terms of the
energy unit E ¼ ð2πℏ2=mÞn2=deff , establishing a key feature

of the observed universality: It relates high excitations in
large-N systems to low-lying excitations in corresponding
systems with smaller, but still considered large, N.
Explicit approximants for χðd; Esc

0 ; α
scÞ can be found by

iteration [57].
In Figs. 3(a) and 3(b) we compare these predictions with

numerically obtained data based onMB levels of Eq. (6) for
the paradigmatic Lieb-Liniger model [70–73] [UðqiÞ ¼ 0
on a ring with length L, i.e., neff ¼ N=Veff ¼ N=L]. We
find that the universality is fulfilled with remarkable
accuracy for the whole range of interactions and particle
numbers, most notably even down to N ¼ 2. Moreover,
spectral fluctuations, not included in our analytical
approach, are strongly suppressed for growing N, implying
approximate analytical predictability of individual excited
MB energies for arbitrary parameters.
Inaccuracies at very low energies and couplings are

cured by extending the energy shifting from first order
(dashed line), based on two-body processes, to second
order (solid line) involving three-cluster diagrams which,
again, can be calculated analytically [64,74]. Our approach
amounts to a description of the entire smooth spectrum in
terms of only two- or three-body processes which non-
perturbatively interpolates between α ¼ 0 and α → ∞.
Figure 3(c) shows results for harmonic confinement, for

which Δsc
∞ ¼ 1=2, representing a generic nonintegrable

N-particle system, see also Fig. 1. The full lines display
the analytical solutions for finite N ¼ 3, 4, 6, 8, converging
to the universal large-N limit Eq. (14). The universal
prediction (inset) shows, besides fermionization χ ≃ 1

(roof) and the perturbative regime χ ≃ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αsc=ðπEsc

0 Þ
p

(right flank), a nonperturbative quantum regime for
Esc
0 ≪ ðαscÞ1=3, αsc ≪ 1 where χ ≃ 2ðαsc=πÞ1=3 becomes

independent of Esc
0 [57]. This peculiarity connects our

findings to the solvable Calogero-Sutherland models with
∼1=r2 interaction [52,53,75] where spectra are exact
bosonic-to-fermionic interpolations that we identify as a
specific realization of χ fulfilling universality, in this case
level by level and constant in Esc

0 . Here we find a
generalization (including nonintegrable systems) where χ
is allowed to vary over the (smoothed) spectrum in a way
characteristic for the particular type of interaction. This
illustrates that due to the generality of the QCE approach
[Eq. (5)], the shifting procedure [Eqs. (8)–(11)], and the
subsequent asymptotic analysis, universality [Eq. (14)] of χ
is not restricted to contact interaction [Eq. (6)]. We stress
that it also applies to higher-order implementations.
We close with a few remarks. (i) Our method provides

predictions for regions of excitation spectra and particle
numbers that are barely accessible via full numerical
calculations. (ii) Universality [Eq. (14)] of χ directly
implies, through Eq. (10), universal features for
N αðEÞ ¼ N 0ðE − χΔ∞Þ and for the MB DOS ρðNÞðEÞ ¼
ρðNÞ
0 ðE − χΔ∞Þ½1 − ðd=dEÞðχΔ∞Þ�, both represented in
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terms of their noninteracting limits at shifted energy.
(iii) Corresponding expressions for the microcanonical
and canonical partition functions and thereby thermody-
namic quantities follow right away. For example, Eq. (14)
implies that the microcanonical temperature T can be
determined as well by the scaled variables [Eq. (13)].

Thus, in the thermodynamic limit N, Veff → ∞ with neff
fixed, partial fermionization χðT; α; neffÞ is an intensive
quantity. (iv) Experimentally accessible [76] local pair
correlations provide a direct probe of χ through a simple
exact relation [57]. (v) Equation (5) also holds true for
fermions indicating that our approach can be generalized to
fermions. (vi) Another application concerns MB scattering
through interacting media due to a fundamental relation
between the smooth DOS and the average dwell time
[77,78] that is, in the single-particle case, robust against
disorder implying universality [79].
To conclude we have shown that the consistent use

of short-time dynamical information in the description of
short-range-interacting systems enables a separation of
interaction and confinement effects implying universal
features of smoothed MB spectra and related thermody-
namic properties. Here we have made this explicit
[Eq. (12)] and have confirmed it for two models of 1D
contact-interacting bosons. On top, the way universality
[Eq. (14)] is derived is not restricted to 1D systems and does
not depend on details of the interactions apart from being
sufficiently short-ranged and excluding strongly attractive
forces if supporting MB bound states beyond small
cluster formation [80]. Hence we envisage applications
and benchmarks in higher dimensions and for other types
of interaction, e.g., by utilizing Beth-Uhlenbeck type
formulas [81,82].
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