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Quantum communication networks have the potential to revolutionize information and communication
technologies. Here we are interested in a fundamental property and formidable challenge for any
communication network, that of guaranteeing the anonymity of a sender and a receiver when a message is
transmitted through the network, even in the presence of malicious parties. We provide the first practical
protocol for anonymous communication in realistic quantum networks.
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The rapid development of quantum communication
networks will allow a large number of agents with different
technological, classical or quantum, capabilities to securely
exchange messages and perform efficiently distributed
computational tasks, opening new perspectives for infor-
mation and communication technologies and eventually
leading to the quantum internet [1]. Many applications of
quantum networks are known, including, for example,
quantum key distribution [2,3] or blind and verifiable
delegation of quantum computation [4], and many more
are yet to be developed.
A crucial yet challenging functionality required in any

network is the ability to guarantee the anonymity of two
parties, the sender and the receiver, when they wish to
transmit a message through the network. In a realistic
network, anonymity should be guaranteed in the presence
of malicious parties. We would additionally like that this
happens in an information-theoretic setting, meaning with-
out making any assumptions neither on the number nor on
the computational power of these malicious parties, who
might in fact have a quantum computer in their hands.
In the classical setting, anonymity, as well as any

multiparty secure computation, is possible with informa-
tion-theoretic security when there is an honest majority of
agents. Furthermore, Broadbent and Tapp [5] showed how
to anonymously transmit a classical message, as well as a
number of other secure protocols, in the absence of an
honest majority. In order to do this, secure pairwise
classical channels are required, as well as classical broad-
cast channels.
In the quantum setting, the first work to deal with the

anonymity of quantum messages was that of Christandl
and Wehner [6]. In their work, one assumes that the n
agents share a perfect n-party GHZ state, i.e., the state
ðj0ni þ j1niÞ= ffiffiffi

2
p

[7]. Under this assumption, they provide

protocols with perfect anonymity both for the broadcast of
a classical bit and for the creation of an EPR pair, i.e., the
state ðj00i þ j11iÞ= ffiffiffi

2
p

, between a sender and a receiver.
Then, they combine the two protocols in order to transmit a
quantum message using a teleportation scheme [8]. This
first creates an EPR pair anonymously between the sender
and the receiver, and then the sender transmits the two
classical outcomes of her measurements anonymously. The
advantage of this protocol is that it only involves local
operations and classical communication once the GHZ
state is shared between the agents. However, it requires the
assumption that a perfect GHZ state has been honestly
shared between the agents. More recently, Lipinska et al.
[9] showed how to perform a similar protocol starting from
trusted W states, albeit only probabilistically.
In order to remedy the drawback of a perfect shared

quantum state, Brassard et al. [10] devised a different
protocol, which includes a verification stage for ensuring
that the shared state is at least symmetric with respect to the
honest agents, and hence perfect anonymity is preserved.
This test involves each agent performing a controlled-NOT
operation between her initial quantum bit (qubit) and n − 1
fresh ancilla qubits that she then sends to all other agents.
Each agent then measures n − 1 qubits in the subspace
spanned by the all zeros and all ones strings, and if the
measurement accepts then the protocol continues with the
remaining n-party GHZ state. While the authors manage in
this way to preserve perfect anonymity, their protocol
cannot be easily implemented, since each agent needs to
perform a size-n quantum circuit and also to have access to
quantum communication with all other agents.
We address this problem by considering quantum

anonymous transmission in the presence of an untrusted
source that may not be producing the GHZ state. Our two
main ingredients are the Christandl-Wehner protocol for
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anonymous entanglement [6] and a protocol for verifying
GHZ states described in Ref. [11]. We then present a new
notion of approximate anonymity that is appropriate for
realistic quantum networks and show a practical and
efficient protocol to achieve such anonymity in the transfer
of a quantum message.
Communication scenario.—Let us first describe the

communication scenario we consider. Our network consists
of n agents who can perform local operations and mea-
surements. A source, who may be malicious, produces
GHZ states that our agents wish to use for anonymous
quantum communication. The source may produce a
different state in every round, or even entangle the states
between different rounds.
The agents themselves may be honest or malicious.

Honest agents follow the protocol but malicious agents can
collaborate with the source, work together, and apply any
cheating strategy on their systems, including entangling
them with some ancilla that they may store in memory to be
accessed at will. The aim of the malicious agents is to break
the anonymity or security of the protocol.
In addition to public quantum channels between all

agents, we require some classical communication channels.
More specifically, we assume there are private classical
channels between each pair of agents. This can be ensured
by each pair of agents sharing a private random string and is
a standard assumption if we have malicious agents in a
classical network. Furthermore, each agent has access to a
broadcast channel, which she can use to send classical
information to all other agents. We will use the term
simultaneous broadcast when it is required that all agents
must broadcast their bit simultaneously, which is an
impractical resource as it is hard to ensure in practice.
Crucially, we only need a regular (or nonsimultaneous)
broadcast channel in our anonymous quantum communi-
cation protocol; all the subprotocols that we use remove the
requirement of simultaneous broadcasting.
Anonymous classical protocols.—We start by providing

the details of a few known anonymous classical protocols,
some of which we will use directly. First, there exists a
classical private protocol from Ref. [5], LOGICALOR, where
each agent inputs a single bit and the protocol computes the
logical OR of these bits. This protocol has correctness in
that if the input of all agents is 0, the protocol always
outputs the correct answer (i.e., 0). If any agent inputs 1,
this protocol succeeds (i.e., outputs 1) with probability
1–2−S after S rounds. Privacy here means that only the
agent can know their input. LOGICALOR is built using
another protocol PARITY [5], which privately computes the
parity of the input string; however, contrary to the PARITY

protocol, LOGICALOR does not require a simultaneous
broadcast channel. Further details of both protocols are
given in the Supplemental Material [12].
We will use the LOGICALOR protocol in order to create

the functionality RANDOMBIT, given in Protocol 1, which

allows the sender to anonymously choose a random bit
according to some probability distribution D. The correct-
ness and privacy of RANDOMBIT follow directly from the
properties of LOGICALOR, namely the only thing the
malicious agents learn is the bit chosen by the sender,
but not who the sender is. We then extend the RANDOMBIT

functionality to define a RANDOMAGENT functionality,
where the sender privately picks a random agent by
performing the RANDOMBIT protocol log2 n times.

Last, we need the NOTIFICATION functionality [5], given
in Protocol 2, where the sender anonymously notifies an
agent as the receiver. Note that we use the same security
parameter S throughout for simplicity; however, this is not
required. As we explicitly call on this in our main protocol,
we describe it below.

Anonymous entanglement with perfect trusted GHZ
states.—In addition to the previous classical protocols,
we will need the ANONYMOUS ENTANGLEMENT protocol
from Ref. [6], given in Protocol 3. Here, it is assumed that
the agents share a state which in the honest case is the GHZ
state, and that the sender and the receiver know their
respective identities. It is not hard to see that assuming the
initial state is a perfect GHZ state, then the protocol creates
an EPR pair between the sender and the receiver perfectly
anonymously.

Protocol 1. RANDOMBIT

Input: all: parameter S. Sender: distribution D.
Goal: sender chooses a bit according to D.

1. The agents pick bits fxigni¼1 as follows: the sender picks bit
xi to be 0 or 1 according to distribution D; all other agents
pick xi ¼ 0.

2. Perform the LOGICALOR protocol with input fxigni¼1 and
security parameter S and output its outcome.

Protocol 2. NOTIFICATION [5]

Input: security parameter S, sender’s choice of receiver is agent r.
Goal: sender notifies receiver.

1. For each agent i:
a. Each agent j ≠ i picks pj as follows: if i ¼ r and agent j
is the sender, then pj ¼ 1 with probability 1

2
and pj ¼ 0

with probability 1
2
. Otherwise, pj ¼ 0. Let pi ¼ 0.

b. Run the PARITY protocol with input fpigni¼1, with the
following differences: agent i does not broadcast her
value, and they use a regular broadcast channel rather
than simultaneous broadcast. If the result is 1, then
yi ¼ 1.

c. Repeat steps 1(a) and 1(b) S times. If the result of the
PARITY protocol is never 1, then yi ¼ 0.

2. If agent i obtained yi ¼ 1, then she is the receiver.
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Efficient verification of GHZ states.—The last ingredient
we use is the VERIFICATION protocol for GHZ states from
the work of Pappa et al. [11] that was also implemented for
three- and four-party GHZ states in McCutcheon et al. [13].
There, one of the agents, the verifier, would like to verify
how close the shared state is to the ideal state. Let k be the
number of honest agents. The verification protocol is then
given in Protocol 4.

From the proofs in Refs. [11] and [13], one can see that
the ideal state always passes the verification test, and, more
interestingly, a soundness statement can also be proven. As
in Ref. [11], we take the ideal n-party state to be jΦn

0i,
given by

jΦn
0i ¼

1ffiffiffiffiffiffiffiffiffi
2n−1

p
� X

ΔðyÞ¼0ðmod 4Þ
jyi −

X
ΔðyÞ¼2ðmod 4Þ

jyi
�
;

where ΔðyÞ ¼ P
i yi denotes the Hamming weight of the

classical n-bit string y. This state is equivalent to the GHZ
state up to local unitaries. Analogous to Refs. [11,13],
to measure the quality of the state jΨi shared between
the n agents, we take a fidelity measure given by

F0ðjΨiÞ ¼ maxUFðUjΨi; jΦn
0iÞ, where U is any unitary

operation on the space of the malicious agents. This reflects
the fact that we are concerned with certifying the state up to
operations on the malicious parts, since these are in any
case out of the control of the honest agents. Then, even
assuming the malicious agents apply their optimal cheating
strategy, the probability of passing the test with the state
jΨi, denoted by PðjΨiÞ, satisfies F0ðjΨiÞ ≥ 4PðjΨiÞ − 3
[11,13]. Note that this holds even if the shared state is
mixed; however, as we will see later, a clever malicious
source will always create pure states.
For our purposes, we will use below a version of this

verification protocol that is similar to the Symmetric
Verification protocol in Ref. [11]. There, it was shown
that with the use of a trusted common random string it was
possible for all agents to take random turns verifying the
validity of the GHZ state. This leads to the guarantee that if
the state is accepted a large number of times before the
agents decide to use it, then with high probability, when the
state is used it should be very close to the correct one.
Anonymity for realistic quantum networks.—All the

quantum protocols we have seen that are used to achieve
anonymity assume perfect operations and achieve
perfect anonymity. In practice, of course, no operation
can be perfect and hence perfect anonymity is unattainable.
Nevertheless, it is still possible to define an appro-
priate notion of anonymity that is relevant for practical
protocols.
We define the notion of an ϵ− anonymous protocol,

where for any number n − k of malicious agents out of n
agents in total, the malicious agents, even when they have
in their possession the entire quantum state that corre-
sponds to the protocol, can only guess who the sender is
(even when the receiver is malicious) or who the receiver is,
with probability that is bounded by ð1=kÞ þ ϵ. The perfect
anonymity is defined when ϵ is equal to 0.
Efficient anonymous quantum message transmission.—

We will now show how to devise an efficient ϵ-anonymous
protocol for quantum message transmission. For simplicity,
we assume there is only one sender. If not, the agents can
run a simple classical protocol in the beginning of the
protocol in order to deal with collisions (multiple senders)
and achieve the unique sender property. See also Refs. [5]
and [6] for details.
Moreover, for simplicity we will describe a protocol

where we distribute one EPR pair between the sender and
the receiver. Then one can perform anonymous teleporta-
tion of the classical measurement results, using in particular
the FIXED ROLE ANONYMOUS MESSAGE TRANSMISSION

functionality as was described in Ref. [5]. In case we want
to increase the fidelity of the transmitted quantum message,
we can further use the subroutines from Brassard et al. [10]
which first create a number of nonperfect EPR pairs, then
distill one pair and then perform the teleportation. Given
that our main contribution is the efficient anonymous

Protocol 3. ANONYMOUS ENTANGLEMENT [6]

Input: n agents share a GHZ state.
Goal: EPR pair shared between the sender and the receiver.

1. Each agent, apart from the sender and the receiver, applies a
Hadamard transform to their qubit. They measure in the
computational basis and broadcast their outcome.

2. The sender first picks a random bit b, broadcasts it, and
applies a phase flip σz only when b ¼ 1.

3. The receiver picks a random bit b0, broadcasts it, and
applies a phase flip σz only when the parity of everyone
else’s broadcasted bits is 1.

Protocol 4. VERIFICATION [11,13]

Input: n agents share state jΨi.
Goal: GHZ verification of jΨi for k honest agents.

1. The verifier generates random angles θj ∈ ½0; πÞ for all
agents including themselves (j ∈ ½n�), such that

P
j θj is a

multiple of π. The angles are then sent out to all the agents
in the network.

2: Agent j measures in the basis fjþθji; j−θjig ¼
fð1= ffiffiffi

2
p Þðj0i þ eiθj j1iÞ; ð1= ffiffiffi

2
p Þðj0i − eiθj j1iÞg and sends

the outcome Yj ¼ f0; 1g to the verifier.
3: The state passes the verification test when the following

condition is satisfied: if the sum of the randomly chosen
angles is an even multiple of π, there must be an even
number of 1 outcomes for Yj, and if the sum is an odd
multiple of π, there must be an odd number of 1 outcomes
for Yj. We can write this condition as ⨁jYj ¼
ð1=πÞPj θjðmod 2Þ.
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protocol for the GHZ verification, we do not provide here
these details that are explained in Ref. [5].
Our scheme is outlined in Protocol 5.

We are now ready to analyze the above protocol. First,
note that if the state is a perfect GHZ state and the
operations of the honest agents are perfect, then the
anonymity of the protocol is perfect.
In step 1, the agents run the NOTIFICATION protocol

which is perfectly anonymous. In the second step, the GHZ
state is shared between the agents, which does not affect the
anonymity. Note that the role of the source can be played by
an agent, as long as the choice of the agent is independent
of who the sender is. In step 3(a), the agents run the
RANDOMBIT protocol which is also perfectly anonymous.
The analysis of the step 3(b) follows from the analysis of
the Symmetric Verification protocol in Ref. [11]. The
only difference here is that instead of using a common
random string, it is the sender who picks the randomness
uniformly. Thus, since the input of the sender completely
determines the outcome of the protocol, the sender can
immediately see if her choice does not correspond to the
outcome, and hence only continues if the randomness is
perfectly uniform.
Let Cϵ be the event that the above protocol does not abort

and that the state used for the ANONYMOUS ENTANGLEMENT

protocol is such that no matter what operation the malicious
agents do to their part, the fidelity of the state with the GHZ

state is at most
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
. Then, we prove the following

theorem for the honest agents:
Theorem 1: For all ϵ > 0

Pr½Cϵ� ≤ 2−S
4n

1 −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p : ð1Þ

Proof sketch.—As proved in Ref. [11], the optimal
cheating strategy of a malicious source, which maximizes
the probability of Cϵ, is to create in each round of the
protocol a pure state jΨi such that F0ðjΨiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
.

The probability of event Cϵ is then given by the
probability of the state being used and all the tests being
passed in the previous rounds. This in turn will depend on
the success probability of RANDOMBIT and if the agent
chosen to act as the verifier is honest. Given that a state with
F0ðjΨiÞ passes the verification protocol with probability
PðjΨiÞ, we can then determine a bound on Pr½Cϵ� by
following the proof in Ref. [11]. The full proof is given in
the Supplemental Material [12]. ▪
By taking S ¼ log2½4n=ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
Þδ�, we have

Pr½Cϵ� ≤ δ. Let us assume for simplicity that when the
event Cϵ is true, which happens with probability at most δ,
the malicious agents can perfectly guess the sender or the
receiver. We will now see that when the event Cϵ is false,
which happens with probability at least 1 − δ, the malicious
agents cannot guess the sender or the receiver with
probability much higher than a random guess. In other
words, there is no strategy for breaking the anonymity of
the communication that works much better than simply
guessing an honest agent at random.
Note that Cϵ being false means that the fidelity of the

shared state with the GHZ state (up to a local operation on
the malicious agents) is at least

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
. By doing enough

rounds, we can ensure that the probability of Cϵ is
negligible. Our statement of anonymity is given as follows:
Theorem 2: If the agents share a state jΨi such that

F0ðjΨiÞ ≥
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
, then the probability that the malicious

agents can guess the identity of the sender is given by

Pr½guess� ≤ 1

k
þ ϵ: ð2Þ

Proof sketch.—First, we show that when the shared state
is close to the GHZ state (up to some operation U on the
malicious agents’ part of the state), then the fidelity
between the final state of the protocol when the sender
is agent i, jΨii, and the final state of the protocol when the
Sender is agent j, jΨji, is high.
Then, we show that when the fidelity between the states

jΨii and jΨji is close to 1, the probability that the malicious
agents can guess the identity of the sender is close to a
random guess. The full proof is given in the Supplemental
Material [12].

Protocol 5. ϵ-ANONYMOUS ENTANGLEMENT DISTRIBUTION

Input: security parameter S.
Goal: EPR pair created between the sender and the receiver with

ϵ-anonymity.
1. The sender notifies the receiver:
The agents run the NOTIFICATION protocol.

2. GHZ state generation:
The source generates a state jΨi and distributes it to the
agents.

3. The sender anonymously chooses verification or
anonymous entanglement:
a. The agents perform the RANDOMBIT protocol, with the

sender choosing her input according to the following
probability distribution: she flips S fair classical coins,
and if all coins are heads, she inputs 0, else she inputs 1.
Let the outcome be x.

b. If x ¼ 0, the agents run ANONYMOUS ENTANGLEMENT,
else if x ¼ 1:
i. Run the RANDOMAGENT protocol, where the sender
inputs a uniformly random j ∈ ½n�, to get output j.

ii. Agent j runs the VERIFICATION protocol as the
verifier, and if she accepts the outcome of the test
they return to step 2, otherwise the protocol aborts.

If at any point in the protocol, the sender realizes someone
does not follow the protocol, she stops behaving like the
sender and behaves as any agent.
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Finally, we consider the entangled state created anony-
mously between the sender and the receiver. Although we
have not considered a particular noise model, our analysis
incorporates a reduced fidelity of jΨi, the state shared by all
the agents at the beginning of the protocol.We can carry this
forward to the resulting anonymously entangled state, if we
assume all the agents are honest and have followed the
protocol. We find that the fidelity of the final entangled state
with the EPR pair will be at least the fidelity of jΨi with the
GHZ state. After the entangled state has been constructed,
the sender and the receiver can perform anonymous tele-
portation of any quantum message jϕi by anonymously
sending a classical message with the teleportation results.
Our final statement is then given in Corollary 3.
Corollary 3: Using Protocol 5, we can achieve an ϵ-

anonymous protocol for quantum message transmission.
Discussion.—We have proposed a practical protocol for

anonymous quantum communications in the presence of
malicious parties and an untrusted source. The verification
step is carried out using a protocol that has been exper-
imentally demonstrated [13] and is tolerant to losses and
noise by design. Our protocol achieves in this full adver-
sarial scenario an approximate notion of anonymity that we
call ϵ-anonymity and which is relevant in the context of
realistic quantum networks.
While the scheme in Ref. [10] results in an exponential

scaling, their protocol is not easily implementable. Recent
work in Ref. [9] provides a protocol for anonymous
transmission using the W state rather than the GHZ state.
While this is beneficial in terms of robustness to noise, the
protocol creates the anonymously entangled state only with
a probability 2=n. Furthermore, the security analysis con-
siders only the semiactive adversarial scenario, which
requires a trusted source.
Our anonymous quantum communication protocol

opens the way to the integration and implementation of
this fundamental functionality into quantum networks
currently under development.
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