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Metabolism and evolution are closely connected: if a mutation incurs extra energetic costs for an
organism, there is a baseline selective disadvantage that may or may not be compensated for by other
adaptive effects. A long-standing, but to date unproven, hypothesis is that this disadvantage is equal to the
fractional cost relative to the total resting metabolic expenditure. We validate this result from physical
principles through a general growth model and show it holds to excellent approximation for experimental
parameters drawn from a wide range of species.
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Discovering optimality principles in biological function
has been a major goal of biophysics [1–6], but the
competition between genetic drift and natural selection
means that evolution is not purely an optimization process
[7–9]. A necessary complement to elucidating optimality is
clarifying under what circumstances selection is actually
strong enough relative to drift in order to drive systems
toward local optima in the fitness landscape. In this Letter,
we focus on one key component of this problem: quantify-
ing the selective pressure on the extra metabolic costs
associated with a genetic variant. We validate a long
hypothesized relation [10–12] between this pressure and
the fractional change in the total resting metabolic expendi-
ture of the organism.
The effectiveness of selection versus drift hinges on two

nondimensional parameters [13]. (i) The first is the selec-
tion coefficient s, a measure of the fitness of the mutant
versus the wild-type. Mutants will have on average 1þ s
offspring relative to the wild-type per wild-type generation
time. (ii) The second is the effective population Ne of the
organism, the size of an idealized, randomly mating
population that exhibits the same decrease in genetic
diversity per generation due to drift as the actual population
(with size N). For a deleterious mutant (s < 0) where
jsj ≫ N−1

e , natural selection is dominant, with the proba-
bility of the mutant fixing in the population exponentially
suppressed. In contrast if jsj ≪ N−1

e , drift is dominant, with
the fixation probability being approximately the same as
for a neutral mutation [7]. Thus, the magnitude of N−1

e
determines the “drift barrier” [14], the critical minimum
scale of the selection coefficient for natural selection to play
a non-negligible role.
The long-term effective population size Ne of an

organism is typically smaller than the instantaneous actual
N and can be estimated empirically across a broad spectrum

of life: it varies from as high as 109 − 1010 in many
bacteria, to 106 − 108 in unicellular eukaryotes, down to
∼106 in invertebrates and ∼104 in vertebrates [12,15]. The
corresponding 6 orders of magnitude variation in the drift
barrier N−1

e has immense ramifications for how we under-
stand selection in prokaryotes versus eukaryotic organisms,
particularly in the context of genome complexity [16–18].
For example, consider a mutant with an extra genetic
sequence relative to the wild type. We can separate s into
two contributions, s ¼ sc þ sa [12]: sc is the baseline
selection coefficient associated with the metabolic costs
of having this sequence, i.e., the costs of replicating it
during cell division, synthesizing any associated mRNA/
proteins, as well as the maintenance costs associated with
turnover of those components; sa is the correction due to
any adaptive consequences of the sequence beyond its
baseline metabolic costs. For a prokaryote with a low drift
barrier N−1

e , even the relatively low costs associated with
replication and transcription are often under selective
pressure [11,12], unless sc < 0 is compensated for an
sa > 0 of comparable or larger magnitude [19]. For the
much greater costs of translation, the impact on growth
rates of unnecessary protein production is large enough to
be directly seen in experiments on bacteria [1,20]. In
contrast, for a eukaryote with sufficiently high N−1

e , the
same sc might be effectively invisible to selection, even if
sa ¼ 0. Thus, even genetic material that initially provides
no adaptive advantage can be readily fixed in a population,
making eukaryotes susceptible to noncoding “bloat” in the
genome. But this also provides a rich palette of genetic
materials from which the complex variety of eukaryotic
regulatory mechanisms can subsequently evolve [12,21].
Part of the explanatory power of this idea is the fact that

the sc of a particular genetic variant should in principle be
predictable from underlying physical principles. In fact, a
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very plausible hypothesis is that sc ≈ −δCT=CT , where CT
is the total resting metabolic expenditure of an organism per
generation time, and δCT is the extra expenditure of the
mutant versus the wild type. This relation can be traced at
least as far back as the famous “selfish DNA” work of
Orgel and Crick [10], where it was mentioned in passing.
But its true usefulness was only shown more recently, in the
notable works of Wagner [11] on yeast and Lynch and
Marinov [12] on a variety of prokaryotes and unicellular
eukaryotes. By doing a detailed biochemical accounting of
energy expenditures, they used the relation to derive values
of sc that provided intuitive explanations of the different
selective pressures faced by different classes of organisms.
The relation provides a Rosetta stone, translating metabolic
costs into evolutionary terms. And its full potential is still
being explored, most recently in describing the energetics
of viral infection [22].
Despite its plausibility and long pedigree, to our knowl-

edge this relation has never been justified in complete
generality from first principles. We do so through a general
bioenergetic growth model, versions of which have been
applied across the spectrum of life [23–25], from unicel-
lular organisms to complex vertebrates. We show that the
relation is universal to an excellent approximation across
the entire biological parameter range.
Growth model.—Let Π(mðtÞ) [unit: W] be the average

power input into the resting metabolism of an organism (the
metabolic expenditure after locomotion and other activities
are accounted for [24]). Π(mðtÞ) can be an arbitrary
function of the organism’s current mass mðtÞ [unit: g] at
time t. This power is partitioned into maintenance of
existing biological mass (i.e., the turnover energy costs
associated with the constant replacement of cellular com-
ponents lost to degradation) and growth of new mass (i.e.,
synthesis of additional components during cellular repli-
cation) [26]. Energy conservation implies

Π(mðtÞ) ¼ B(mðtÞ)mðtÞ þ E(mðtÞ) dm
dt

; ð1Þ

here B(mðtÞ) [unit: W=g] is the maintenance cost per unit
mass, and E(mðtÞ) [unit: J=g] is the synthesis cost per unit
mass. We allow both these quantities to be arbitrary
functions of mðtÞ.
Though we will derive our main result for the fully

general model of Eq. (1), we will also explore a special
case: Π(mðtÞ)¼Π0mαðtÞ, B(mðtÞ) ¼ Bm, E(mðtÞ) ¼ Em,
with scaling exponent α and constantsΠ0, Bm, and Em [25].
Allometric scaling of Π(mðtÞ) with α ¼ 3=4 across many
different species was first noted in the work of Max Kleiber
in the 1930s [27], and with the assumption of time-
independent B(mðtÞ) and E(mðtÞ) leads to a successful
description of the growth curves of many higher animals
[23,24]. However, recently there has been evidence that
α ¼ 3=4 may not be universal [28,29]. Higher animals still
exhibit α < 1 (with debate over α ¼ 2=3 vs 3=4 [30]), but

unicellular organisms have a broader range α≲ 2. Thus, we
will use the model of Ref. [25] with an arbitrary species-
dependent exponent α. While the resulting description is
reasonable as a first approximation, particularly for uni-
cellular organisms, one can easily imagine scenarios where
the exponent and maintenance costs might vary between
different developmental stages [31]. For the case of main-
tenance in endothermic animals, which in our approach
includes all non-growth-related expenditures, more energy
per unit mass is allocated to heat production as the
organism matures [32], effectively increasing the cost of
maintenance. In the Supplemental Material, Sec. V [33] we
show how the generalized model works in this scenario,
using experimental growth data from two endothermic bird
species [72]. Thus, it is useful to initially consider the
model in complete generality.
Baseline selection coefficient for metabolic costs.—To

derive an expression for sc for the growth model of Eq. (1),
we first focus on the generation time tr, since this will be
affected by alterations in metabolic costs. tr is the typical
age of reproduction, defined explicitly for any population
model in the Supplemental Material, Sec. I [33], where we
relate it to the population birth rate r through r ¼ lnðRbÞ=tr
[73,74]. Here Rb is the mean number of offspring per
individual. Let ϵ ¼ mr=m0 be the ratio of the mass
mr ¼ mðtrÞ at reproductive maturity to the birth mass
m0 ¼ mð0Þ. For example, in the case of symmetric binary
fission of a unicellular organism, Rb ≈ ϵ ≈ 2 (see the
Supplemental Material, Sec. III [33] for a discussion of
ϵ in more general models of cell size homeostasis). Since
mðtÞ is a monotonically increasing function of t for any
physically realistic growth model, we can invert Eq. (1) to
write the infinitesimal time interval dt associated with an
infinitesimal increase of mass dm as dt ¼ dmEðmÞ=GðmÞ
where GðmÞ≡ ΠðmÞ − BðmÞm is the amount of power
channeled to growth, and we have switched variables from
t tom. Note that GðmÞmust be positive over them range to
ensure that dm=dt > 0. Integrating dt gives us an expres-
sion for tr

tr ¼
Z

ϵm0

m0

dm
EðmÞ
GðmÞ : ð2Þ

If we are interested in finding sc for a genetic variation, we
can focus on the additional metabolic costs due to that
variation. For the purposes of calculation, this means
treating the mutation as if it does not alter biological
function in any other respect, including the ability of the
organism to assimilate energy for its resting metabolism
through uptake of nutrients or foraging. If the mutation
actually had only metabolic cost effects, the full selection
coefficient s ¼ sc. However, generically mutations can
affect both metabolic costs and power input (and/or other
adaptive aspects), so s ¼ sc þ sa, with a correction term sa
due to the adaptive effects [12]. In the latter case, sc can still
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be calculated as shown below (ignoring adaptive effects)
and interpreted as the baseline contribution to selection
due to metabolic costs. While we do not focus on sa here,
our theory can be readily extended to consider adaptive
contributions as well, as illustrated in the Supplemental
Material, Sec. VII [33], including aspects like spare
respiratory capacity. This broader formalism is summarized
in Fig. S3 of the Supplemental Material [33].
Proceeding with the sc derivation, the products of the

genetic variation (i.e., extra mRNA transcripts or translated
proteins) may alter the mass of the mutant, which we
denote by m̃ðtÞ. The left-hand side of Eq. (1) remains
Π(mðtÞ), where mðtÞ is now the unperturbed mass of the
organism (the mass of all the prevariation biological
materials). The power input Π(mðtÞ) depends on mðtÞ
rather than m̃ðtÞ since only mðtÞ contributes to the
processes that allow the organism to process nutrients, in
accordance with the assumption that power input is
unaltered in order to calculate sc. It is also convenient to
express our dynamics in terms of mðtÞ rather than m̃ðtÞ,
since the condition defining reproductive time tr remains
unchanged, mðtrÞ ¼ ϵm0, or in other words when the
unperturbed mass reaches ϵ times the initial unperturbed
mass m0. Thus, Eq. (1) for the mutant takes the form
Π(mðtÞ)¼ B̃(mðtÞ)þẼ(mðtÞ)dmðtÞ=dt, where B̃(mðtÞ)¼
B(mðtÞ)þδB and Ẽ(mðtÞ) ¼ E(mðtÞ)þ δE are the
mutant maintenance and synthesis costs. For simplicity,
we assume the perturbations δB and δE are independent of
mðtÞ, though this assumption can be relaxed. In the
Supplemental Material, Sec. IV [33], we show a sample
calculation of δB and δE for mutations in Escherichia coli
and fission yeast involving short extra genetic sequences
transcribed into noncoding RNA. This provides a concrete
illustration of the framework we now develop.
Changes in the metabolic terms will perturb the gen-

eration time, t̃r ¼ tr þ δtr, and consequently the birth rate
r̃ ¼ rþ δr. The corresponding baseline selection coeffi-
cient sc can be exactly related to s̃c ≡ −δtr=tr, the frac-

tional change in tr, through sc ¼ Rs̃c=ð1−s̃cÞ
b − 1 (see the

Supplemental Material, Sec. I [33]). This relation can be
approximated as sc ≈ lnðRbÞs̃c when js̃cj ≪ 1, the regime
of interest when making comparisons to drift barriers
N−1

e ≪ 1. In this regime s̃c ≈ δr=r, the fractional change
in birth rate. While we focus here on the simplest case of
exponential population growth, where s̃c is time indepen-
dent, we generalize our approach to density-dependent
growth models, where s̃c varies between generations, in the
Supplemental Material, Sec. VI [33]. s̃c can be written in a
way that directly highlights the contributions of δE and δB
to s̃c. To facilitate this, let us define the average of any
function F(mðtÞ) over a single generation time tr as
hFi≡ t−1r

R tr
0 dtF(mðtÞ). Changing variables from t to

m, like we did above in deriving Eq. (2), we can write
this equivalently as hFi ¼ R

ϵm0
m0

dmFðmÞpðmÞ, where

pðmÞ≡ t−1r dt=dm ¼ t−1r EðmÞ=GðmÞ. The value pðmÞdm
is just the fraction of the generation time that the organism
spends growing from mass m to mass mþ dm. Expanding
Eq. (2) for tr to first order in the perturbations δE and δB,
the coefficient s̃c ¼ −δtr=tr ¼ −σEδE=hEi − σBδB=hBi,
with positive dimensionless prefactors

σE ≡ hEihE−1i; σB ≡ hBihΘ−1i: ð3Þ
Here ΘðmÞ≡GðmÞ=m, and F−1ðmÞ≡ 1=FðmÞ for any F.
The magnitude of σB versus σE describes how much
fractional increases in maintenance costs matter for selec-
tion relative to fractional increases in synthesis costs. We
see that both prefactors are products of time averages of
functions related to metabolism. See the Supplemental
Material, Sec. II [33] for a detailed derivation of Eq. (3),
and also Eq. (4) below.
Relating the baseline selection coefficient to the

fractional change in total resting metabolic costs.—The
final step in our theoretical framework is to connect the
above considerations to the total resting metabolic expendi-
ture CT of the organism per generation time tr, given
by CT ¼ ζ

R tr
0 dtΠ(mðtÞ) ¼ ζtrhΠi. To compare with the

experimental data of Ref. [12], compiled in terms of
phosphate bonds hydrolyzed [P], we add the prefactor ζ
which converts from units of J to P. Assuming an ATP
hydrolysis energy of 50 kJ=mol under typical cellular
conditions, we set ζ ¼ 1.2 × 1019 P=J. The genetic
variation discussed above perturbs the total cost, C̃T ¼
CT þ δCT , and the fractional change δCT=CT can be
expressed in a form analogous to s̃c, namely δCT=CT ¼
σ0EδE=hEi þ σ0BδB=hBi, with

σ0E ≡ hEihΠi−1hΠE−1i; σ0B ≡ hBihΠi−1hΠΘ−1i; ð4Þ

where again the prefactors are expressed in terms of time
averages over metabolic functions. The connection
between sc and δCT=CT can be constructed by comparing
Eq. (3) with Eq. (4). We see that s̃c ¼ −δCT=CT for all
possible perturbations δE and δB only when σE ¼ σ0E and
σB ¼ σ0B. We derive strict bounds on the differences
between the prefactors (Supplemental Material, Sec. II
[33]), which show that the relation is exact when (i)ΠðmÞ is
a constant independent of m, and/or (ii) EðmÞ and ΘðmÞ
are independent of m. Outside these cases, the relation
s̃c ≈ −δCT=CT is an approximation. To see how well it
holds, it is instructive to investigate the allometric growth
model described earlier, where Π(mðtÞ) ¼ Π0mαðtÞ,
E(mðtÞ) ¼ Em, B(mðtÞ) ¼ Bm.
Testing the relation in an allometric growth model.—We

use model parameters based on the metabolic data of
Ref. [12], covering a variety of prokaryotes and unicellular
eukaryotes. These data consisted of two quantities, CG and
CM, which reflect the growth and maintenance contribu-
tions to CT . Using Eq. (1) to decompose Π(mðtÞ), we can
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write CT ¼ CG þ trCM, where CG ¼ ζ
R
ϵm0
m0

dmEðmÞ ¼
ζðϵ − 1Þm0Em is the expenditure for growing the organism,
and CM ¼ ζhBmi ¼ ζBmhmi is the mean metabolic
expenditure for maintenance per unit time. CG and CM
scale linearly with cell volume (Supplemental Material,
Sec. III [33]), and best fits to the data, shown in Fig. 1, yield
global interspecies averages Em ¼ 2600 J=g and
Bm ¼ 7 × 10−3 W=g. As discussed in the Supplemental
Material [33], these values are remarkably consistent with
earlier, independent estimates, for unicellular and higher
organisms [24,25,75,76].
Since E(mðtÞ) ¼ Em is a constant in the allometric

growth model, σE ¼ 1 from Eq. (3), and σE ¼ σ0E holds
exactly from Eq. (4). So the only aspect of the approxi-
mation that needs to be tested is the similarity between σB
and σ0B. Figure 2(a) shows σB versus σ0B for the range
α ¼ 0–3, which includes the whole spectrum of biological
scaling [28] up to α ¼ 2, plus some larger α for illustration.
For a given α, the coefficient Π0 has been set to yield a
certain division time tr ¼ 1–40 h, encompassing both the
fast and slow extremes of typical unicellular reproductive
times. In all cases, σ0B is in excellent agreement with σB. For
the range α ≤ 2, the discrepancy is less than 15%, and it is
in fact zero at the special points α ¼ 0, 1. Clearly the
approximation begins to break down at α ≫ 1, but it
remains sound in the biologically relevant regimes. Note
that σB values for tr ¼ 1 h are ∼0.01, reflecting the
minimal contribution of maintenance relative to synthesis
costs in determining the selection coefficient for fast-
dividing organisms. This limit is consistent with microbial
metabolic flux theory [77], where maintenance is typically
neglected, so s̃c ¼ −δCT=CT exactly (since only σE ¼
σE0 ¼ 1 matters). As tr increases, so does σB and hence the
influence of maintenance costs, so by tr ¼ 40 h, σB is
comparable to σE.
To make a more comprehensive analysis of the validity

of the s̃c ≈ −δCT=CT relation, we do a computational

search for the worst case scenarios: for each value of α
and ϵ, we can numerically determine the set of other growth
model parameters that gives the largest discrepancy
j1 − σ0B=σBj. Figure 2(b) shows a contour diagram of the
results on a logarithmic scale, log10 j1 − σ0B=σBj, as a
function of α and ϵ. Estimated values for α and ϵ from
the growth trajectories of various species are plotted as
symbols to show the typical biological regimes. While the
maximum discrepancies are smaller for the parameter
ranges of unicellular organisms (circles) compared to
multicellular ones (triangles), in all cases the discrepancy
is less than 50%. To observe a serious error (σ0B a different
order of magnitude than σB), one must go to the large α,
large ϵ limit (top right of the diagram) which no
longer corresponds to biologically relevant growth
trajectories.
Validity of the relation in more complex growth scenar-

ios.—Going beyond the simple allometric model,
Supplemental Material, Sec. V [33] analyzes avian growth
data, where the metabolic scaling exponent varies between
developmental stages. We find σE ¼ σ0E ¼ 1 and the
discrepancy j1 − σ0B=σBj ≤ 30%. Supplemental Material,
Sec. VI [33] considers density-dependent growth, illus-
trated by examples of bacteria competing for a limited
resource in a chemostat and predators competing for prey.
Remarkably, when these systems approach a stationary
state in total population and resource or prey quantity, we
find σE ¼ σ0E ¼ 1, σB ¼ σ0B ¼ ðBm lnRbÞ=ðEmd ln ϵÞ,
where d is the dilution rate in the chemostat, or the predator
death rate. The simple expression for σB allows straight-
forward estimation of the maintenance contribution to

FIG. 1. The growth CG (blue) and maintenance CM (red)
contributions to an organism’s total resting metabolic cost CT ¼
CG þ trCM per generation time tr. The symbols (circles ¼
prokaryotes, triangles ¼ unicellular eukaryotes) represent data
tabulated in Ref. [12]. CG and CM have units of 109 P (phosphate
bonds hydrolyzed) and 109 P=h, respectively. The lines represent
best fits to the theoretical expressions for CG and CM from the
allometric growth model.

(a) (b)

FIG. 2. (a) σB (solid curves) from Eq. (3) and σ0B (dashed
curves) from Eq. (4) versus α, for the allometric growth model
with Em ¼ 2600 J=g, Bm ¼ 7 × 10−3 W=g, and ϵ ¼ 2. At any
given α, the parameterΠ0 for each pair of curves (different colors)
is chosen to correspond to particular reproductive times tr,
indicated in the labels. (b) Contour diagram showing the
logarithm of the maximum possible discrepancy log10 j1 −
σ0B=σBj for any allometric growth model parameters, as a function
of α and ϵ. To illustrate biological ranges α and ϵ, the symbols
correspond to data for various species (circles ¼ unicellular,
triangles ¼ multicellular) drawn from the growth trajectories
analyzed in Ref. [25] (light blue) and Ref. [23] (dark blue).
See the Supplemental Material, Sec. III [33] for a detailed
species list.
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selection. For the chemostat that contribution can be tuned
experimentally through the dilution rate d.
We thus reach the conclusion that the baseline selection

coefficient for metabolic costs can be reliably approximated
as sc ≈ − lnðRbÞδCT=CT . As in the original hypothesis
[10–12], −δCT=CT is the dominant contribution to the
scale of sc, with corrections provided by the logarithmic
factor lnðRbÞ. Our derivation puts the relation for sc on a
solid footing, setting the stage for its wider deployment. It
deserves a far greater scope of applications beyond the
pioneering studies of Refs. [11,12,22]. Knowledge of sc
can also be used to deduce the adaptive contribution sa ¼
s − sc of a mutation, which has its own complex connection
to metabolism [78] (see also the Supplemental Material,
Sec. VII [33]). The latter requires measurement of the
overall selection coefficient s, e.g., from competition or
growth assays, and the calculation of sc from the relation,
assuming the underlying energy expenditures are well
characterized. The sc relation underscores the key role
of thermodynamic costs in shaping the interplay between
natural selection and genetic drift. Indeed, it gives impetus
to a major goal for future research: a comprehensive
account of those costs for every aspect of biological
function, and how they vary between species, what one
might call the “thermodynome.” Relative to its more mature
omics brethren—the genome, proteome, transcriptome, and
so on—the thermodynome is still in its infancy, but fully
understanding the course of evolutionary history will be
impossible without it.
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