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A chain of small Josephson junctions (a.k.a. superinductor) emerged recently as a high-inductance, low-
loss element of superconducting quantum devices. We notice that the intrinsic parameters of a typical
superinductor in fact place it into the Bose glass universality class for which the propagation of waves in a
sufficiently long chain is hindered by pinning. Its weakness provides for a broad crossover from the
spectrum of well-resolved plasmon standing waves at high frequencies to the low-frequency excitation
spectrum of a pinned charge density wave. We relate the scattering amplitude of microwave photons
reflected off a superinductor to the dynamics of a Bose glass. The dynamics at long and short scales
compared to the Larkin pinning length determines the low- and high-frequency asymptotes of the reflection
amplitude.
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Interaction between particles gives rise to collective
excitations in a many-body system. In the case of
Coulomb interaction, these are the well-known plasma
oscillation modes. The long-range interaction between
particles confined to one or two dimensions (1D or 2D)
may be cut off by the polarizability of the surrounding
medium. Translational invariance in 1D or 2D then results
in the soundlike plasmon spectrum at low frequency. An
ubiquitously present disorder breaks translational invari-
ance and possibly affects the spectrum of low-frequency
excitations. The competition between interaction and dis-
order sets the stage to a possible localization transition in a
many-body system. This competition in 1D was addressed
by means of perturbative renormalization group (RG)
theory by Giamarchi and Schulz [1]. Interaction in 1D
can be characterized by a dimensionless parameter K
related to the magnitude of zero-point fluctuations of the
particles’ density (the classical limit is K → 0). It turns out
that the disorder potential is irrelevant at K > 3=2 and the
soundlike mode does exist down to the smallest wave
vectors (q → 0). However, at K < 3=2 even an infinitesi-
mally weak disorder results in localization, severely affect-
ing the properties of 1D systems at long spatial scales.
Attempts to understand the localized phase have led to the
notion of Bose glass phase [2] and to establishing its links
to the pinned vortices in superconductors [3], domain walls
in magnets [4], and “classical” charge-density waves in
normal metals [5].
In the localized phase, the static spatial order is destroyed

on the scale exceeding the Larkin length, R⋆, which was
first introduced [3] for the collective pinning of vortices
(these were modeled as classical particles). For weak

pinning, R⋆ exceeds significantly the interparticle distance.
Elastic properties of the pinned system on length scales
shorter than R⋆ are hardly affected by pinning. Respectively,
in a nondissipative system excitations with frequencies
ω≳ ω⋆ ≡ v=R⋆ may still be approximated by propagating
waves (here v is the propagation velocity) [6]. Pinning
drastically changes the excitation spectrum at frequencies
ω ≪ ω⋆. The corresponding density of modes arises from
the statistics of specific configurations of disorder supporting
localized-in-space low-frequency excitations [5–12]. The
found [9–12] limiting low-frequency behavior of the density
of modes (per unit volume) is νðωÞ ∝ ω4.
Conductivity σðωÞ, being sensitive to the frequency

dependence of the transition matrix elements along with
that for the density of modes, carries some information regar-
ding the dynamics of charge density waves. It was predicted
to have a maximum at ω ∼ ω⋆, see, e.g., Refs. [13–16].
Experiments performed with a 2D electron gas in GaAs
heterostructures qualitatively confirmed the predictions, but
disagreed with them quantitatively, see Ref. [17] for a
review. In 1D, the physics of charge density waves was
addressed in an experiment [18] where nonlinear current-
voltage characteristics of Josephson-junction chains were
studied. The tell-tale signature of the pinning was the
appearance of dissipative current above a threshold voltage
and a specific, systematic dependence of the threshold
voltage on the parameters of a chain. The threshold voltage
is related to the pinning energy at scale R⋆ [19,20], which is
the basic property of the static pinning configuration.
In this Letter, we elucidate a way to study the dynamics

of charge-density waves with a special type of Josephson-
junction arrays, known as superinductors. Developed in the
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context of superconducting quantum devices [21], super-
inductors are linear elements combining high inductance
with a small stray capacitance. An equivalent circuit of a
superinductor is shown in Fig. 1. Large inductance and
linearity are achieved by making the number of junctions
large, N ≫ 1, and quantum fluctuations of the phase across
a single junction small, EJ=EC ≫ 1, while having small
stray capacitance calls for a very small ratio EC=Eg [here
EJ is the Josephson energy of a single junction, Eg ¼
4e2=ð2CgÞ and EC ¼ 4e2=ð2CÞ are the charging energies
for an extra Cooper pair associated, respectively, with the
superconducting island’s stray capacitance Cg and the
junction capacitance C; the parameters were N ∼ 102,
EJ=EC ∼ 20, and EC=Eg ∼ 10−4 in the experiment [21] ].
The product of EJ=EC and EC=Eg turns out to be small,
resulting in K < 1, so nominally superinductors are insula-
tors. However, the amplitude of quantum phase slips and
therefore the pinning potential are exponentially small,
expð− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

32EJ=EC

p Þ ≪ 1. Unless N ≫ 1 compensates for
that smallness, phase slips are rare and the superinductor
faithfully performs its inductance function in a circuit
[21–24]. Recently, even longer chains with N ∼ 104 were
developed [25] for which the statistics of quantum phase
fluctuations allows a finite density of quantum phase slips
to appear. This, in turn, enables the weak pinning of charge
density waves. The realization of the pinning potential
depends on the random background charges in the envi-
ronment of the chain. These are slowly fluctuating in time
[26], providing a tool for the ensemble averaging of
observables. We evaluate the most accessible one, which
is the ensemble-averaged reflection amplitude off a chain,
hrðωÞi, find its relation to the local density of states of
excitations, and predict the low- and high-frequency
asymptotes of hrðωÞi.
We model the superinductor with the Hamiltonian

Hchain ¼
1

2

X
nm

QnC−1
nmQm − EJ

X
n

cosðφn − φnþ1Þ; ð1Þ

where φn and Qn are the canonically conjugated phase and
charge of each superconducting island along the chain,
½φn; Qm� ¼ 2eiδn;m. The first term in Eq. (1) describes the

electrostatic coupling with elements Cnn ¼ ð2Cþ CgÞ and
Cnn�1 ¼ −C of the capacitance matrix, the second term
describes the Josephson coupling between successive
islands. The Hamiltonian (1) can be used if the temperature,
charging, and Josephson energy are smaller than the
superconducting gap. The small stray capacitance corre-
sponds to a large charge screening length, lsc ¼
a

ffiffiffiffiffiffiffiffiffiffiffi
C=Cg

p
≫ a, where a is the unit cell length.

In harmonic approximation, the Hamiltonian (1) yields
the dispersion relationωðqÞ ¼ vjqj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðvq=ΩÞ2

p
, where

v ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2EJEg

p
=ℏ is the plasmon velocity and Ω ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi

2EJEc
p

=ℏ is the single-junction plasma frequency.
Modes with ωðqÞ ≈ vjqj are adequately described by a
harmonic string Hamiltonian,

H0 ¼
Z

dx

�
πvK
2ℏ

Π2 þ ℏv
2πK

ð∂xθÞ2
�
; ð2Þ

acting on states with energies within the bandwidth ∼ℏΩ.
Here θ and Π ¼ −ðℏ=πÞ∂xφ are two canonically conju-
gated fields, ½θðxÞ;Πðx0Þ� ¼ iℏδðx − x0Þ, where φ and ρ ¼
−ð1=πÞ∂xθ are the coarse-grained phase and Cooper-pair
density along the chain, respectively. The parameter K ¼
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EJ=ð2EgÞ

p
is related to the low-frequency impedance Z

of the chain, K ¼ πℏ=ð4e2ZÞ.
Quantum phase slips allow for jumps of the phase

differences φn − φnþ1 between the minima of the
Josephson energy in Eq. (1). Rare phase slips can be
accounted for by adding [27] a perturbative term to the
Hamiltonian (2),

H ¼ H0 −
λ

a

Z
dx cosð2θ þ χÞ: ð3Þ

Operators e�2iθðxÞ appearing in Eq. (3) create �2π kinks at
position x in the field φðxÞ. The classical field χðxÞ leads to
the Aharonov-Casher effect in the probability amplitudes of
phase slips [28,29].
Field χðxÞ ¼ 2π

R
x dx0ρbðx0Þ is random, ρbðxÞ is the

density of coarse-grained offset charges. A maximal dis-
order corresponds to offset charges fluctuating independ-
ently and randomly in each superconducting island. It
yields a Gaussian correlator

hcos χðxÞ cos χðx0Þi ¼ 1

2
aδðx − x0Þ; ð4Þ

where h� � �i stands for disorder averaging, for the field cos χ
(a similar relation holds for the field sin χ) on spatial scales
larger than lsc. Furthermore, a recent experiment [26]
reported timescale tc ∼ 1 min for the offset charge fluctu-
ations of a single island. Extrapolating their results to a
chain yields a timescale tc=N for scrambling the Aharonov-
Casher phase in a chain of N junctions.

FIG. 1. Microwave photons incident from a waveguide are
reflected off a superinductor formed of N Josephson junctions in
a series.
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Due to the separation of scales in the plasmon spectrum
at Cg=C ≪ 1 and the known full solution [30,31] of the
phase-slip problem at Cg=C ¼ 0, it is possible, in contrast
to the phenomenological treatments [27,32], to derive the
Hamiltonian (3) and evaluate λ in terms of microscopic
parameters,

λ ¼ 8ffiffiffi
π

p ð2E3
JEcÞ1=4e−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
32EJ=Ec

p
at EJ ≫ Ec: ð5Þ

Once λ is known, the Oð1Þ uncertainty in the bandwidth
∼ℏΩ translates, at K ≪ 1, into a negligible OðKÞ uncer-
tainty in the low-frequency (ω ≪ Ω) observables which we
aim to evaluate.
In the thermodynamic limit (infinitely long chain), the

perturbative RG flow associated with the Hamiltonian (3) is
given by the Giamarchi-Schulz scaling [1]

dDðΛÞ
dl

≃ ð3 − 2KÞDðΛÞ: ð6Þ

The unitless function DðΛÞ here describes the evolution of
the phase slip probability in the process of coarse graining,
Λ is the running momentum cutoff, and dl ¼ −dΛ=Λ. The
initial condition for Eq. (6) is DðΛ0Þ ¼ vλ2=ðaΩ3Þ with λ
of Eq. (5) and Λ0 ∼Ω=v. Equation (6) signals a transi-
tion between a superfluid phase (K > Kc) and a Bose
glass (K < Kc) at Kc ¼ 3=2. At a small fugacity
expð− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

32EJ=Ec

p Þ, see Eq. (5), one may disregard the
renormalization [1] of K in finding the transition condi-
tion, Eg ¼ ð2π2=9ÞEJ.
In the classical limit (K → 0 and ℏ → 0 at fixed finite

K=ℏ), one may neglect the kinetic term in Eq. (3) and
estimate the Larkin length for the static pinning of the
charge density from energy arguments: on one hand, a
deformation of a static field θ̄ðxÞ by 2π over the length R
costs an elastic energy ∼ℏv=ðKRÞ. On the other hand, for a
constant field θ̄, the disorder-averaged pinning energy
vanishes, while its typical value for a given disorder
configuration is estimated as ∼λ

ffiffiffiffiffiffiffiffiffi
R=a

p
using the correlator

(4). The pinning energy dominates the elastic one if
R > R⋆, where R⋆ ¼ afℏv=½aKλðR⋆Þ�g2=3. Using here
the renormalized phase slip amplitude λðRÞ ¼
λðR=lscÞ−K instead of its bare value [Eq. (5)] allows us
to account for quantum fluctuations on short length scales
R≲ R⋆. Solving then for R⋆, and using v=a ¼ Ω

ffiffiffiffiffiffiffiffiffiffiffi
C=Cg

p
,

we find the generalized Larkin length,

R⋆ ¼ a

�
ℏΩ
Kλ

�
2=ð3−2KÞ�C

Cg

�ð1−KÞ=ð3−2KÞ
: ð7Þ

Remarkably, 1=R⋆ coincides with the momentum scale at
which the perturbative RG, cf. Eq. (6), breaks down,
Dð1=R⋆Þ ∼ 1. (Note that R⋆ diverges at K ¼ 3=2.)

We are now ready to formulate the problem of the elastic
scattering of microwave photons off a Josephson-junction
chain of a finite length d. For this, we consider the same
Hamiltonian (3) but with spatially nonuniform para-
meters such that it describes a waveguide with plasmon
velocity v0 and impedance Z0 ¼ πℏ=ð4e2K0Þ (and without
phase slips, λ ¼ 0) at x < 0, and the superinductor at
0 < x < d, see Fig. 1. The equations of motion derived
from Eq. (3) yield θ̈ ¼ −v2∂2

xθ þ ð2λ=aÞ sinð2θ þ χÞ
together with the boundary conditions expressing the con-
tinuity of current, ∂tθð0þ; tÞ ¼ ∂tθð0−; tÞ, and voltage,
ðv=KÞ∂xθð0þ; tÞ ¼ ðv0=K0Þ∂xθð0−; tÞ, at the interface
between the waveguide and the chain, as well as the
absence of current, ∂tθðd; tÞ ¼ 0 at the other end of
the chain. Taking the classical limit, we can now define
the reflection amplitude rðωÞ at frequency ω, such that the
solution of these equations is expressed as θðx; tÞ ¼ θ̄ðxÞþ
ψðxÞe−iωt, where θ̄ðxÞ is a static charge density that
minimizes the (classical) energy, and ψðxÞ describes small
oscillations around it. The linearized equation of motion
takes a form similar to the Schrödinger equation,

ω2ψ ¼ −v2∂2
xψ þ VðxÞψ at 0 < x < d; ð8Þ

with the normalization condition

ψðxÞ ¼ eiωx=v0 þ rðωÞe−iωx=v0 at x < 0; ð9Þ

and potential VðxÞ¼ð4πKλv=ℏaÞcos½2θ̄ðxÞþχðxÞ� which
is determined both by the offset charge disorder and the
static charge density θ̄ðxÞ.
The impedance of typical waveguides is of the order of

the vacuum impedance, Zvac ≈ 377Ω; thus, K ≪ K0. Using
this, we can find an expression for rðωÞ in terms of the
properties of the chain valid at arbitrary disorder configu-
ration. Namely, we observe that, at K=K0 → 0, the chain is
disconnected from the waveguide. Thus, it admits a set
of discrete bound states with eigenfrequencies ωn and
eigenfunctions ψnðxÞ, which satisfy the Schrödinger
equation [Eq. (8)] with nonradiative boundary conditions,
∂xψnð0þÞ ¼ 0 and ψnðdÞ ¼ 0, corresponding to the
absence of accumulated charge at x ¼ 0þ and to zero
current at x ¼ d, respectively. We also impose the nor-
malization condition ð1=dÞ R d

0 dxψ2
nðxÞ ¼ 1. At small but

finite K=K0, these solutions become quasibound states:
they emit plasmons in the waveguide, such that ψðx<0Þ¼
ψð0−Þe−iωnx=v0 with ψð0−Þ ¼ ψnð0þÞ according to the
boundary condition for current continuity at x ¼ 0. The
energy stored in the bound state is En ¼ ω2

nd=ðπvKÞ, while
the energy emitted in the waveguide is characterized by the
Poynting vector P ¼ ω2

nψ
2
nð0þÞ=ðπK0Þ. The rate of energy

loss, Γn ≡ P=En ¼ ψ2
nð0þÞðK=K0Þv=d, gives the level

width of the quasibound state. We can now use the
Breit-Wigner formula to account for the contribution of
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all quasibound states, rðωÞ¼−1þi
P

nΓn=ðω−ωnþiΓn=2Þ.
Let us now introduce a Green function of the chain, which
solves

½ω2 þ v2∂2
x − VðxÞ�Gðx; x0;ωÞ ¼ πvδðx − x0Þ ð10Þ

with the boundary conditions ∂xGð0;x0;ωÞ¼Gðx;d;ωÞ¼0.
Introducing the local plasmon density of states

νðx;ωÞ ¼ −
2ω

π2v
ImGðx; x;ωÞ; ð11Þ

defining ν0 ¼ 1=ðπvÞ, and using the complete basis of
normalized eigenstates ψnðxÞ to express the Green function
allows us to find a relation between the real part of the
reflection amplitude and the density of states at the edge of
the chain,

r0ðωÞ ¼ −1þ K
K0

νðx ¼ 0;ωÞ
ν0

: ð12Þ

The random charge realization changes on the timescale
tc=N far exceeding the typical plasmon propagation time
d=v. For a static disorder, rðωÞ is the sum of narrow peaks
corresponding to plasmon resonances in the finite-size
chain. We now evaluate its disorder average assuming that
the measurement time exceeds tc=N, thus facilitating the
averaging.
At large frequencies, ω ≫ ω⋆, the plasmon wavelength

v=ω is much smaller than R⋆. This justifies neglecting the
spatial variations of the static field θ̄ appearing in the
disorder potential in Eq. (8), which then becomes Gaussian.
The potential induces both forward and backscattering
characterized by a frequency-dependent mean-free path
evaluated within Born approximation, and using Eqs. (4)
and (7), as

lðωÞ ¼ vτðωÞ ¼ R⋆ðω=ω⋆Þ2: ð13Þ
Ignoring the backscattering for a while, we readily find that
the local density of states is expressed as νð0;ωÞ ¼
ð1=dÞPnδðω − ωnÞ, where ωn ¼ ðnþ 1=2ÞΔþ γn corre-
sponds to a spectrum of plasmon resonances nominally
spaced by Δ ¼ πv=d and randomly shifted by γn ≈
½1=ð2dωnÞ�

R
d
0 dxV0ðxÞ, where V0 is the “smooth” compo-

nent of V. Gaussian average over V0 yields an “inhomo-
geneous broadening” of the peaks in hνð0;ωÞi, which
acquire a Gaussian lineshape.
Accounting for both forward and backscattering in the

evaluation of hνð0;ωÞi at the large frequency ω ≫ ω⋆ can
be performed with the Fokker-Planck method, see Sec. I of
the Supplemental Material [33]; it only modifies the width
of the Gaussian lineshapes, compared with the forward-
scattering case. The result is

hνð0;ωÞi ¼ 2ν0
X
m

Δffiffiffiffiffiffi
2π

p
γðωÞ e

−½ω−ðmþ1=2ÞΔ�2=½2γ2ðωÞ�; ð14Þ

with the frequency-dependent width of the resonances

γðωÞ ¼ Δ
ωcr

ω
and ωcr ¼

ffiffiffi
3

p
ω⋆

�
d
R⋆

�
1=2

: ð15Þ

The Gaussian-shaped resonances are well separated as
long as γðωÞ ≪ Δ, corresponding to the frequency range
ω ≫ ωcr or, equivalently, for a chain’s length d ≪ lðωÞ.
At frequencies below the crossover, ω≲ ωcr, the reso-

nances overlap, gradually suppressing the amplitude of
oscillations of rðωÞ. Using the Poisson summation formula
to transform Eq. (14), we find

hνð0;ωÞi ¼ 2ν0½1 − 2 cos ð2πω=ΔÞe−2ðπωcr=ωÞ2 � ð16Þ

in the frequency range ω⋆ ≪ ω ≪ ωcr.
The leading term in Eq. (16) is independent of frequency,

as atω ≫ ω⋆ the adjustment of the static configuration θ̄ðxÞ
to the external charge disorder realization is not important.
In contrast, at ω≲ ω⋆, the plasmon wavelength becomes of
the order of the correlation length of θ̄ðxÞ. In this limit,
the oscillatory part of hrðωÞi remains exponentially small,
but—in addition—the leading term in Eq. (16) becomes a
function of ω=ω⋆. The ω=ω⋆ → 0 asymptote of that
function is a power law with a universal exponent,

hνðx ¼ 0;ωÞi ¼ Cν0ðω=ω⋆Þ4 at ω=ω⋆ ≪ 1: ð17Þ

To see the universality of the exponent, we consider a
sequence of models bridging the limits of weak and strong
pinning, and then apply the ideas [6,9–12] developed for
the density of states in the bulk to derive the edge property
hνðx ¼ 0;ωÞi. Then, we find the constant C ≈ 0.032 by a
numerical simulation.
To motivate Eq. (17), we may assume the chain to be half

infinite, as the boundary condition at x ¼ d should not
matter due to the wave localization. The low-frequency
plasmon spectrumwill be contributed by the soft oscillation
modes in special, barely stable configurations of disorder
built in the vicinity of the x ¼ 0 edge of the chain. Next, we
generalize the considered-so-far Gaussian model of dis-
order in continuum by substituting the Hamiltonian (3) and
the correlator (4) with

H ¼ H0 −
λffiffiffiffiffi
ac

p
X
j

cos½2θðxjÞ þ χjÞ�; ð18Þ

where χj and xj are, respectively, the random phases
associated with and random locations of discrete impu-
rities. By varying their density c from a large value down to
c ≪ 1=a, one crosses over between the limits of weak
collective and strong individual-impurities pinning. The
latter limit is amenable to the analytical treatment [6,9].
Infinitely strong pinning on separate impurities reduces

the system to a sequence of independent segments [6].
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Finite-strength impurities allow for special configurations
carrying soft excitations with an arbitrarily low frequency,
as was noticed in Ref. [9]. Closely following that work,
we consider the needed three-impurity configurations in
the vicinity of x ¼ 0. The only difference from Ref. [9] is
that we impose the boundary condition ∂xθ̄ð0Þ ¼ 0 on the
static charge distribution. Following Ref. [9], we find
impurity configurations resulting in the low-frequency
local modes of the pinned elastic string. It is tedious but
straightforward (see Sec. II of the Supplemental Material
[33]) to show that the boundary condition at x ¼ 0 does not
affect the ω → 0 asymptote of the density of states,
hνðωÞi ∝ ω4. As argued in Refs. [10–12], the functional
form of the asymptote is universal and remains the same in
the limit of weak pinning, which is of direct interest in the
context of this Letter.
The considerations that led to Eq. (17) are substantiated—

and the proportionality coefficient in it is found—in a
numerical simulation presented in Sec. III of the
Supplemental Material [33], and whose result is illustrated
in Fig. 2.
Using Eq. (12) and its disorder average in various

frequency ranges [Eqs. (14), (16), and (17)], we can
now predict the overall evolution of the photon reflection
amplitude with the increase of frequency. The microwave
photons are fully reflected with hr0i ≈ −1 at ω ≪ ω⋆;
according to Eq. (17), the average reflection increases
approaching hr0i ≈ −1þ 2K=K0 at ω ∼ ω⋆. Upon further
increase of ω, the prominence of the spatial resonances
in hr0ðωÞi raises, and they become well resolved at
ω ≫ ωcr, see Eqs. (16) and (14). In the latter regime,
the width of resonances translates into the quality factor
Q ¼ ω=½ð4 ln 2ÞγðωÞ� ∝ ω2. We emphasize that the Q
factor of the resolved resonances, according to our theory,
comes from the ensemble averaging applied to the elastic
plasmon propagation. We note in passing that the inelastic
scattering, considered in Refs. [34,39] in the context of
plasmon decay at d → ∞, results in a minor contribution to

1=Q of well-resolved spatial resonances at finite d, see
Sec. IV of the Supplemental Material [33].
In conclusion, microwave photon scattering off a super-

inductor may open a new way to study pinning in a one-
dimensional quantum system. This Letter was devoted to
the theory of reflection amplitude in the limit of small
quantum fluctuations (K ≪ 1). The reflection amplitude
was recently measured [25] for a variety of superinductors;
in a qualitative agreement with our predictions, the
increase of the Q factor with the microwave frequency
was seen for samples with the highest probability of
quantum phase slips.
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