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The discovery of topological phases in non-Hermitian open classical and quantum systems challenges
our current understanding of topological order. Non-Hermitian systems exhibit unique features with no
counterparts in topological Hermitian models, such as failure of the conventional bulk-boundary
correspondence and non-Hermitian skin effect. Advances in the understanding of the topological properties
of non-Hermitian lattices with translational invariance have been reported in several recent studies;
however little is known about non-Hermitian quasicrystals. Here we disclose topological phases in a
quasicrystal with parity-time (PT ) symmetry, described by a non-Hermitian extension of the Aubry-
André-Harper model. It is shown that the metal-insulating phase transition, observed at the PT symmetry
breaking point, is of topological nature and can be expressed in terms of a winding number. A photonic
realization of a non-Hermitian quasicrystal is also suggested.
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Introduction.—The discovery of topological phases of
matter has introduced a major twist in condensed matter
physics [1,2] with great impact in other areas of physics,
such as photonics, atom optics, acoustics, and mechanics
[3–8]. Topological band theory classifies Hermitian topo-
logical systems depending on their dimensionality and
symmetries [9,10]. The bulk topological invariants are
uniquely reflected in robust edge states localized at
open boundaries. The ability to engineer non-Hermitian
Hamiltonians, demonstrated in a series of recent experi-
ments [11–17], and the related observation of unconven-
tional topological boundary modes sparked a great interest
to extend topological band theory to open systems [18–40].
Striking features are the failure of the conventional bulk-
boundary correspondence [27,31,35,37–40], eigenstate
condensation [30,31], the non-Hermitian skin effect
[33,37,38], and the sensitivity of the bulk spectra on
boundary conditions [19,36,39–41]. Most previous studies
have been concerned with crystals; however, little is known
about the topological properties of non-Hermitian quasi-
crystals. Quasicrystals (QCs) constitute an intermediate
phase between fully periodic lattices and fully disordered
media, showing a long-range order but no periodicity
[42,43]. A paradigmatic model of a one-dimensional
(1D) QC is provided by the Aubry-André-Harper (AAH)
Hamiltonian [43–45], which is known to show a metal-
insulator phase transition [44–46]. In the Hermitian
case, the AAH Hamiltonian is topologically nontrivial
because it can be mapped into a two-dimensional quantum
Hall system on a square lattice [47–50]. A few recent
studies have considered some non-Hermitian extensions of
the AAH model [51–56], mainly with a commensurate

potential and with open boundary conditions. Such numeri-
cal studies investigated how gain and loss distributions
affect edge states and parity-time (PT ) symmetry breaking
[51–53,55], the Hofstadter butterfly spectrum [52], and the
localization properties of eigenstates [54,56]. However, so
far there is not any evidence of topological phases and
topological phase transitions in non-Hermitian QCs.
The aim of this Letter it to disclose topological phases

in non-Hermitian quasicrystals, described by a PT -
symmetric extension of the AAH model. The main result
is that the localization-delocalization phase transition,
observed at the PT symmetry breaking point in the
thermodynamic limit, is of topological nature and can be
expressed in terms of a winding number which character-
izes the two distinct phases of the system. A photonic
realization of the topological phase transition is proposed,
which is based on the spectral properties of mode-locked
lasers with an intracavity etalon.
Non-Hermitian Aubry-André-Harper model.—The tight-

binding Hamiltonian of the AAH model, describing the
hopping dynamics on a 1D lattice with an incommensurate
potential, reads [42–46]

HðφÞψn ¼ Jðψnþ1 þ ψn−1Þ þ Vnψn ð1Þ

for the occupation amplitudes ψn at the various sites of the
lattice, where J is the hopping rate,

Vn ¼ V cosð2παnþ φÞ ð2Þ

is the onsite potential, V and φ are the amplitude and phase
of the potential, andα is irrational for aQC.Herewe consider
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a non-Hermitian extension of the AAH Hamiltonian by
complexification of the potential phase φ, i.e., we assume

φ ¼ θ þ ih; ð3Þ

which yields

Vn ¼ V cosð2παnþ θ þ ihÞ ð4Þ

for the incommensurate on-site potential. Note that for
θ ¼ 0 one has V−n ¼ −V�

n and HðφÞ is PT symmetric.
In the Hermitian limit h ¼ 0, H is an almost Mathieu
operator which shows very rich and subtle spectral features,
which have been extensively investigated in the mathemati-
cal literature [57,58]. Roughly speaking, for irrational α the
HamiltonianH shows a metal-insulator phase transition: for
V < 2J all eigenstates are delocalized (metallic phase) and
the spectrum is independent of θ, whereas for V > 2J all
eigenstates are localized (insulating phase) with an inverse
localization length (Lyapunov exponent) independent of the
eigenenergy and given by γ ¼ logðV=2JÞ [44]. Here we are
interested in studying the bulk properties ofH with complex
phase φ and to disclose topological phases in the thermo-
dynamic limitL → ∞ of numberL of lattice sites. Since any
irrational number α can be approximated by a sequence of
rational numbers pn=qn with pn, qn prime integers and pn,
qn → ∞ as n → ∞ [59], in numerical simulations one can
assume as usual a finite (yet arbitrarily large) number of sites
L ¼ qn on a ring with periodic boundary conditions
ψnþL ¼ ψn. Clearly, in an ordinary crystal (α rational) in
the thermodynamic limitL → ∞ a large number of unit cells

are reproduced inside the ring; however for irrational α there
is not any unit cell that is exactly reproduced inside the ring.
Topological phases, symmetry breaking, and metal-

insulator transition.—Topological properties of 1D super-
lattices and QCs in Hermitian models have attracted great
interest recently [47,48,50,60–66]. In particular, the con-
nection between the Hermitian AAH model and the two-
dimensional quantum Hall (Harper-Hofstadter) system
[47,64], when the phase θ is considered as a synthetic
additional dimension, has lead to the demonstration of
topological pumping [67] of edge states in photonic QCs
[47]. However, the possibility that topological properties of
1D QCs can emerge from higher dimensions is a matter of
debate [46,60,61,64]. In a recent work [37], Gong and
co-workers introduced a topological classification of non-
Hermitian Hamiltonians that can be safely applied to
systems with broken translational invariance. Following
such an approach, we consider here the case V < 2J,
corresponding to the delocalized phase in the Hermitian
limit h ¼ 0, and assume the imaginary phase term h as the
control (deformation) parameter of the Hamiltonian
HðφÞ ¼ Hðθ; hÞ, where the dependence of H on θ and
h is defined by Eqs. (1)–(3). For h ¼ 0, the spectrum of
HðθÞ is absolutely continuous, has a Cantor-set structure
with a dense set of gaps and is independent of θ [57,58].
For example, when α is the inverse of the golden mean,
α ¼ ð ffiffiffi

5
p

− 1Þ=2, the spectrum consists of mainly three
“bands,”which again consist of three subbands and so forth
[see upper panel in Fig. 1(a)]. Let EB be a base energy
which is not an eigenenergy of H but it is assumed to be
embedded in a small gap of the Cantor set. Let us then
introduce a winding number w ¼ wðhÞ as follows:
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FIG. 1. Topological phase transition in the non-Hermitian Aubry-André-Harper Hamiltonian Hðθ; hÞ for J ¼ V ¼ 1,
α ¼ ð ffiffiffi

5
p

− 1Þ=2. Periodic boundary conditions are assumed on a lattice with L ¼ 610 sites. (a) Energy spectrum E of H for
θ ¼ 0 and for a few increasing values of the complex phase h. (b) Behavior of the largest value of jImðEÞj vs h for θ ¼ 0. The dashed
vertical curve corresponds to the critical value hc ¼ logð2J=VÞ ≃ 0.6931 predicted in the thermodynamic limit L → ∞. (c) Numerically
computed behavior of the largest and smallest values of inverse participation ratio IPR of eigenstates vs h. (d) Behavior of the winding
number w vs h for EB as computed using Eq. (5) (circles) and Eq. (S-12) given in the Supplemental Material [68] (squares). The base
energy EB used to compute the winding number w is EB ¼ 0. The value of w does not change if the base energy EB is varied, provided
that it remains embedded in the central band of the Cantor set of H at h ¼ 0.
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wðhÞ ¼ lim
L→∞

1

2πi

Z
2π

0

dθ
∂
∂θ log det

�
H

�
θ

L
; h

�
− EB

�
:

ð5Þ

The winding number w counts the number of times the
complex spectral trajectory encircles the base point EB
when the real phase θ varies from zero to 2π [37]. As shown
in the Supplemental Material [68], w ¼ wðhÞ does not
depend on EB, is quantized, and can take only two values
depending on the strength of the non-Hermitian phase h

w ¼
�

0 h < hc
−1 h > hc;

ð6Þ

where the critical value hc is given by

hc ¼ log

�
2J
V

�
: ð7Þ

This shows that there are two distinct topological phases of
H. The two phases correspond to entirely delocalized
eigenstates and real energy spectrum (unbroken PT phase)
for w ¼ 0, and to entirely localized eigenstates and com-
plex energy spectrum (broken PT phase) for w ¼ −1. Such
a result thus shows that the localization and symmetry-
breaking phase transitions at h ¼ hc are of topological
nature. The detailed proof of the above statements is given
in the Supplemental Material [68]. Here we just briefly
outline the main two steps of the proof. As a first step, by a
similarity transformation the Hamiltonian Hðθ; hÞ is con-
nected to the Hatano-Nelson model [18,19,21] with incom-
mensurate potential, and the localization properties of the
eigenstates of H for h ≠ 0 are thus determined from those
of the AAH model in the Hermitian limit h ¼ 0 (Sec. S.1
in Ref. [68]). This also entails that the non-Hermitian
delocalization-localization phase transition at h ¼ hc coin-
cides with the PT symmetry breaking phase transition in
the thermodynamic limit (the energy spectrum is entirely
real in the delocalized phase, while it becomes complex in
the localized phase). As a second step, the topological
nature of the phase transition is demonstrated by direct
computation of the winding number w (Sec. S.-2 in
Ref. [68]), which involves some mathematical steps and
a result derived by Thouless [69] that relates the localiza-
tion length of eigenstates and the density of states. To
exemplify and check the validity of the analytical results,
we performed numerical diagonalization analysis of the
matrix Hamiltonian H by varying the non-Hermitian phase
h assuming α ¼ ð ffiffiffi

5
p

− 1Þ=2, L ¼ 610 (corresponding to
αL ≃ 377), J ¼ V ¼ 1, and periodic boundary conditions.
The localization of eigenstates is measured by the inverse
of the participation ratio IPR ¼ P

njψnj4=ð
P

njψnj2Þ2,
with IPR ≃ 1=L ≃ 0 for a delocalized state and IPR ≃ 1
for a fully localized state. Figure 1(a) shows a few examples

of the energy spectrum E of H for a few increasing values
of the non-Hermitian phase h, whereas Fig. 1(b) shows the
behavior of the largest value of jImðEÞj vs h. A rather
abrupt increase of maxfjImðEÞjg from zero is clearly
observed near h ¼ hc ≃ 0.6931, corresponding to the
critical value of the complex phase predicted by the
theoretical analysis [Eq. (7)]. The behavior of the IPR vs
h, for the eigenstates with either the largest or smallest IPR,
is depicted in Fig. 1(c). Clearly, according to the theoretical
analysis the critical value h ¼ hc separates the metal and
insulating phases. The topological nature of the phase
transition is illustrated in Fig. 1(d), where the winding
number w vs h is numerically computed using Eq. (5). Note
that contrary to the rather general result of Ref. [37], the
trivial topological phase w ¼ 0 corresponds here to all
eigenstates being delocalized (rather than localized as in
Ref. [37]). Such a seemingly inconsistency can be resolved
by observing that, as shown in Ref. [68], the non-Hermitian
AAH Hamiltonian in the infinitely extended lattice limit
can be transformed into theHatano-NelsonHamiltonianwith
incommensurate disorder by a similarity transformation, and
that in such a transformation the metal and insulating phases
are reversed. The winding number w describes a bulk
property of the system; however in our model it is not useful
to predict edge states, i.e., to state a bulk-boundary corre-
spondence like in Ref. [37]. Numerical results show that a
number of edge states can arise, either at the left or right
boundaries, in a lattice with open boundary conditions and
in the metallic phase, where w assumes the trivial value
w ¼ 0 (see Fig. S1 in Ref. [68]). The number of edge states
sensitively depends on h. Since edge states correspond rather
generally to eigenstates with complex energies, the PT
symmetric phase is fragile in a systemwith open boundaries,
as already noticed in previous works [51–53]. Finally, we
note that, while the AAH and Nelson-Hatano Hamiltonians
are related one another by a similarity transformation, the
non-Hermitian skin effect observed in the latter model, i.e.,
the shrinking of all bulk states into one edge of the lattice
[35], is not found in the AAH model.
Non-Hermitian photonic quasicrystal.—An interesting

case is obtained in the double limit h → ∞, V → 0 with
V expðhÞ → 2V0 finite, corresponding to the incommensu-
rate potential Vn ¼ V0 expð−2πiαn − iθÞ in Eq. (1). In this
case, assuming V0 as the control parameter of the
Hamiltonian, according to Eq. (7) the topological phase
transition is attained as V0 is increased above the critical
value V0c ¼ J. A simple photonic system that realizes a
complex QC of this kind, and thus showing a non-
Hermitian topological phase transition, is provided by a
frequency-modulated (FM) mode-locked laser [70,71].
Mode-locked lasers are routinely used to generate ultra-
short optical pulses [72] and are known to provide
experimentally accessible systems to observe phase tran-
sitions in their spectrum [73–76]. A schematic of a
mode-locked laser that realizes a non-Hermitian QC is
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shown in Fig. 2(a). It consists of a standard Fabry-Perot
laser cavity with axial modes spaced by Δωax and
with an intracavity phase modulator driven at frequency
ωm ¼ Δωax. The gain medium is provided by a homo-
geneously broadened active material with a slow relaxation
dynamics and wide gain bandwidth Δωg ≫ Δωax [70]. The
spectral axial modes with amplitudes ψn realize a 1D lattice
in the spectral domain [Fig. 2(b)]. The phase modulator,
impressing a time-dependent phaseΔϕðtÞ ¼ ΔFM cosðωmtÞ
to the transmitted light field, couples the spectral modes
with a hopping rate J ¼ ΔFM=2. A synthetic complex
potential Vn ¼ V0 expð2πiαnþ iθÞ on the lattice is real-
ized by a low-finesse intracavity etalon, with free spectral
range Δωetal ¼ ωm=α incommensurate with respect to the
modulation frequency and much smaller than the gain
bandwidth. The potential amplitude V0 is determined by
the reflectance R of etalon facets according to the relation
V0 ≃ R (see Ref. [68] for technical details). The evolution
of spectral amplitudes ψn at successive round-trips in the
cavity is described by the coupled-mode equations of mode
locking in frequency domain [68,72,74]

i
dψn

dt
¼ Jðψnþ1 þψn−1Þ þV0 expð2πiαnþ iθÞψn þ iLψn;

ð8Þ

where t is the round-trip number (i.e., physical time
normalized to the cavity photon transit time) and L
accounts for the effects of cavity losses and amplification
in the gain medium. For a homogeneously broadened
gain medium and neglecting other cavity dispersion effects,
one can assume [70,72] L ¼ −γ þ g=ð1þ 4n2ω2

m=Δω2
gÞ,

where γ is the effective loss rate of the cavity per round-trip,
n ¼ 0 is the index of the spectral axial mode at the center of
the Lorentzian gainline, and g is the saturated gain. For a
slow gain medium, g satisfies the rate equation [70]

dg=dt ¼ γk½g0 − gð1þ IÞ�; ð9Þ

where g0 is the small-signal gain, γk is the relaxation rate
of the population inversion normalized to the modula-
tion frequency, and I ¼ P

njψnj2 is the intracavity laser

intensity, averaged over the cavity round-trip time and
normalized to the saturation intensity of the two-level
transition. Clearly, in the limit of a broad gainline
ωm=Δωg → 0 and assuming g ≃ γ, the spectral mode
dynamics as described by Eq. (8) emulates the non-
Hermitian AAH model. This means that, in the localized
(insulating) phase J < V0, a narrow laser spectrum, local-
ized near the center of the gainline, should be observed,
whereas a rather abrupt spectral broadening should arise in
the delocalized (metallic) phase J > V0. In the latter case
the actual oscillating laser spectrum is ultimately limited by
the finite bandwidth of the gain medium according to the
Kuizenga-Siegman theory of active mode locking [71].
Figure 3 shows a typical behavior of laser spectra, as
obtained after transient laser switch-on dynamics starting
from random noise of spectral amplitudes, for increasing
values of the FM modulation strength ΔFM. Parameter
values used in the simulation are typical for the Nd:YAG
laser [68,71] and correspond to an incommensurate poten-
tial with α ¼ ð ffiffiffi

5
p

− 1Þ=4 and V0 ¼ 0.14. The behavior of
the oscillating bandwidth vs ΔFM [Fig. 3(a)] clearly shows
an abrupt change at ΔFM ≃ 2V0, corresponding to the non-
Hermitian topological phase transition from the insulating
to the metallic phase.
Conclusions.—The discovery of topological phases in

non-Hermitian open systems challenges the current
wisdom of topological order. Recent studies have provided
many insights to solve major issues such as generalizations
of the bulk-boundary correspondence; however little is
known about topological properties of non-Hermitian QCs.

(a) (b)

ωm
ωΔωax

Δωg

n=0

FIG. 2. Non-Hermitian photonic QC. (a) Schematic of the FM
mode-locked laser. (b) The axial cavity modes of the laser cavity
(vertical lines), coupled by the phase modulator, realize a 1D
tight-binding lattice in the spectral domain. The low-finesse
etalon introduces an incommensurate complex potential on the
lattice.
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FIG. 3. Non-Hermitian phase transition in the spectrum of a FM
mode-locked laser. (a) Behavior of the spectral width of the
oscillating laser modes (in log scale), normalized to the modu-
lation frequency, vs modulation depth ΔFM. (b) Detailed profiles
of laser spectra at a few increasing values of ΔFM. The laser
spectra are taken after transient relaxation oscillations by numeri-
cal simulations of Eqs. (8) and (9). Parameter values used in the
simulations are: γ ¼ 0.19, g0 ¼ 3γ, ωm ¼ 2π × 1.384 GHz,
Δωg ¼ 2π × 126 GHz, α ¼ ð ffiffiffi

5
p

− 1Þ=2 and V0 ¼ 0.14. The
dashed vertical curve in (a) corresponds to the critical value
ΔFM ¼ 2V0 of the topological non-Hermitian phase transition.
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Here we have considered a non-Hermitian extension of the
Aubry-André-Harper model, and uncovered the topological
nature of the non-Hermitian metal-insulator phase transi-
tion observed when the complex phase of the incommen-
surate potential is varied. A photonic realization of a non-
Hermitian QC, which could provide a signature of the
phase transition, has been also proposed. There are several
open questions ahead. For example, the winding number in
Eq. (5) uncovers the bulk topological nature of metallic or
insulating phases of the QC, however, unlike the Hatano-
Nelson crystal with open boundaries, showing the non-
Hermitian skin effect [37], it is not useful to study edge
states. Attempts to provide a topological classification of
edge states in non-Hermitian QCs have been suggested
very recently [77]. Finally, it would be interesting to extend
the present study to other non-Hermitian QCs, such as
Fibonacci chains and two-dimensional QCs.
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