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We show that a two-dimensional semiconductor with Rashba spin-orbit coupling could be driven into the
second-order topological superconducting phase when a mixed-pairing state is introduced. The super-
conducting order we consider involves only even-parity components and meanwhile breaks time-reversal
symmetry.As a result, each corner of a square-shapedRashba semiconductorwould host one singleMajorana
zero mode in the second-order nontrivial phase. Starting from edge physics, we are able to determine the
phase boundaries accurately. A simple criterion for the second-order phase is further established, which
concerns the relative position between Fermi surfaces and nodal points of the superconducting order
parameter. In the end, we propose two setups that may bring this mixed-pairing state into the Rashba
semiconductor, followed by a brief discussion on the experimental feasibility of the two platforms.
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Topological superconductors (TSCs) distinguish them-
selves from trivial ones in the robust midgap states—
Majorana zero modes (MZMs)—that could form either at
local defects or boundaries [1–9]. Among the various
proposals for TSCs, semiconducting systems with
Rashba spin-orbit coupling (RSOC) [10–13] as well as
topological insulating systems [14] have attracted the most
attention. In both platforms, signatures of MZMs have been
observed when conventional s-wave pairing is introduced
through proximity effect [15–25].
In these conventional, also termed as first-order, TSCs,

topologically nontrivial bulk in d dimensions is usually
accompanied by MZMs confined at (d − 1)-dimensional
boundaries, the so-called bulk-boundary correspondence.
Very recently, this correspondence was extended in topo-
logical phases of nth order [26–45], where topologically
protected gapless modes emerge at (d − n)-dimensional
boundaries. In Refs. [46–49], the authors demonstrate that a
topological insulator could be transformed into a second-
order TSC when unconventional pairing with the s�- or
dx2−y2-wave form is introduced. Looking back at the history
of first-order TSCs, one may then ask if it is possible for a
Rashba semiconductor (RS), which is itself a trivial system
as opposed to topological insulators, to accommodate such
a higher-order nontrivial phase as well. In this work, we
will show that it is possible, provided a mixed-pairing state
that exhibits both extended s-wave and dx2−y2-wave sym-
metries could be induced therein.
Admixture of the two aforementioned pairing states was

envisioned shortly after the discovery of iron-based super-
conductors (FeSCs) [50–53]. Since then tremendous efforts
have been made to identify this mixed-pairing order
[54,55]. In this Letter, we shall consider a general mixed

state that could reduce to three intensively studied mixed
pairings in FeSCs, that is, sþ d [56], sþ is [57], and
sþ id [50,52]. Our main finding is that, such a pairing state
alone could possibly drive a two-dimensional RS into the
second-order topological superconducting phase. Of the
three specific forms aforementioned, however, only sþ id
pairing could make it. An accurate criterion is further
established for the second-order phase to emerge, which is
closely related to the relative position between nodal points
of the pairing order parameter and the two nondegenerate
Fermi surfaces split by RSOC.
We consider a RS in two dimensions with mixed pairing

of extended s-wave and dx2−y2-wave form, and the corre-
sponding Hamiltonian is given by

H ¼ 1

2

X
k

Ψ†ðkÞHðkÞΨðkÞ;

HðkÞ ¼ hðkÞτ3 þ ΔsðkÞτ1 þ ΔsdðkÞτ2; ð1Þ

in the Nambu spinor basis ΨðkÞ ¼ fck↑; ck↓; c†k↓;−c†k↑gT .
In Eq. (1), hðkÞ ¼ 2Aðsin kxσ2 − sin kyσ1Þ − 2tðcos kx þ
cos kyÞ − μ, with t, A, and μ being hopping amplitude,
RSOC strength, and chemical potential, respectively,
and Pauli matrices σ1;2;3, τ1;2;3 act in spin and Nambu
space separately. The superconducting term ΔsðkÞ ¼ Δ0 þ
2Δ1ðcos kx þ cos kyÞ in Eq. (1), denoting extended s-wave
pairing, and ΔsdðkÞ ¼ −2Δ2ðcos kx þ δ cos ky þ ηÞ, de-
scribing sþ d pairing that in addition exhibits a π=2-phase
shift relative to Δs. This time-reversal-symmetry(TRS)-
broken pairing reduces to sþ d when Δs ¼ 0, to sþ id
when δ ¼ −1, η ¼ 0, and to sþ iswhen δ ¼ 1. The energy
spectrum of Hamiltonian Eq. (1) has a simple form,
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EðkÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2�ðkÞ þ Δ2

sðkÞ þ Δ2
sdðkÞ

q
; ð2Þ

where ϵ�ðkÞ¼�2A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2kxþsin2ky

q
−2tðcoskxþcoskyÞ−μ,

being the kinetic energy.
In the absence of Δsd term, the model is well known to

support first-order topological superconducting phase that
features TRS-protected helical Majorana modes on the
edges, as well as nodal superconducting phase with point
nodes [58] [see Fig. 1(c)], provided

jμ − 4tαΔj < 2
ffiffiffi
2

p
jAj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2Δ

q
; jαΔj < 1 ð3Þ

with αΔ ¼ Δ0=ð4Δ1Þ. Equation (3) can be fulfilled when
the system exhibits s� pairing symmetries. Turning on Δsd
is supposed to break TRS and gap out the helical modes.
Instead of driving the system into trivial phases, we will
demonstrate that this TRS-broken term may give birth to
second-order topological superconducting phases, featur-
ing MZMs bound at corners. To understand the origin of
second-order phases, we may start from gapless edge states
in the absence of Δsd and then consider effects of this mass
term on the gapless modes.
As is known, second-order phases appear when gapless

states on intersecting edges acquire mass gaps of opposite
signs. To investigate the edge physics, we consider a

cylinder geometry, where the periodic boundary condition
is only assumed along the y direction [see Fig. 1(a)].
Accordingly, the Hamiltonian in this geometry would take
the form H ¼ 1

2

P
kyΨ

†ðkyÞH1DðkyÞΨðkyÞ, when written in
the new basis ΨðkyÞ ¼ ⨁jψ jðkyÞ, where ψ jðkyÞ¼fcj;ky↑;
cj;ky↓;c

†
j;−ky↓

;−c†j;−ky↑gT , cj;ky↑ð↓Þ¼ð1= ffiffiffiffiffiffi
Nx

p ÞPkxck↑ð↓Þe
ikxj,

j stands for lattice site and Nx is the total number of sites.
The components of H1DðkyÞ are given by the following
4 × 4 block matrices,

½H1DðkyÞ�j;j ¼ M ¼ MαβΓαβ;

½H1DðkyÞ�j;jþ1 ¼ ð½H1DðkyÞ�jþ1;jÞ† ¼ T ¼ TαβΓαβ: ð4Þ

In Eq. (4) Γαβ ¼ τα ⊗ σβ with α, β ¼ 0, 1, 2, 3, and the two
tensors M and T have the following entries: M30 ¼
−μ − 2t cos ky, M31¼−2Asinky, M10 ¼ Δ0 þ 2Δ1 cos ky,
M20 ¼ −2Δ2ðηþ δ cos kyÞ, T30 ¼ −t, T32 ¼ −iA, T10 ¼
Δ1 and T20 ¼ −Δ2. The energy spectrum and correspond-
ing wave functions in this geometry could be determined
from the eigenvalue equation H1DðkyÞϕ ¼ EðkyÞϕ, which
leads to

Mϕj þ T†ϕj−1 þ Tϕjþ1 ¼ EðkyÞϕj; for any j; ð5Þ

with ϕj being a four-component vector that represents the
wave function at site j.
In the first-order phase when Δsd ¼ 0, we have

Eðky ¼ πÞ ¼ 0 if αΔ > 0 and Eðky ¼ 0Þ ¼ 0 otherwise
[58]. In both cases MZMs are doubly degenerate on edge
AB as well as CD defined in Fig. 1(a). Without loss of
generality, hereafter we will assume αΔ > 0. In the nodal
phase, zero modes in the spectrum EðkyÞ would appear at
the projections of bulk nodes on the edge Brillouin zone
(BZ), as is shown in Figs. 2(a) and 2(c). There are eight
nodes in total, which relate to one another through fourfold
rotation C4, mirror reflections Mx and My with mirror
planes at kx ¼ 0 and ky ¼ 0. In the absence of Δsd,
Hamiltonian Eq. (1) is invariant under these operations, i.e.,

U−1
C4
Hðkx; kyÞUC4 ¼ Hð−ky; kxÞ;

U−1
Mx

Hðkx; kyÞUMx
¼ Hð−kx; kyÞ;

U−1
My

Hðkx; kyÞUMy
¼ Hðkx;−kyÞ; ð6Þ

where UC4 ¼ eiπσ3=4, UMx
¼ σ1, and UMy

¼ σ2. Because
of these crystalline symmetries, we may denote the eight
bulk nodes by �ðkþ;�k−Þ and �ðk−;�kþÞ, with

cos k� ¼ −αΔ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2Δ − ðμ − 4tαΔÞ2=ð8A2Þ

q
: ð7Þ

In contrast to the first-order phase, zero modes at �k� in
the nodal phase are not localized. However, in the edge BZ
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FIG. 1. (a). Heterostructure of a RS and SC with mixed pairing
(top view). Majorana zero modes (denoted by red solid ellipses)
emerge at the four corners in the second-order topological
superconducting phase. Two sets of coordinate systems con-
nected by C4 rotation are shown, in both real space and reciprocal
space. (b). Hybrid Josephson junction with FeSC (s� pairing),
cuprate SC (dx2−y2 pairing), and a single RS layer sandwiched
between them. The junction interface is parallel to the ab plane of
the two SCs. (c). Phase diagram in absence of Δsd, with
Δ0 ¼ Δ1 ¼ 1. Phase I: first-order TSC; Phase II: nodal SC;
Phase III: fully gapped trivial SC. For sþ id pairing, Phase I and
II would be driven into the second-order phase. All parameters in
this and the following figures are in the unit of t.
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where ky ∈ ð−k−;−kþÞ ∪ ðkþ; k−Þ (0 < kþ < k− < π is
assumed), we find that two localized states with opposite
excitation energy �EðkyÞ would exist on each edge, as is
evidenced in Figs. 2(c) and 2(d). It seems that these edge
states are not topologically protected, since each gapless
point (�k�) is the projection of two bulk nodes carrying
opposite topological charges [see Fig. 2(a)] which are
supposed to cancel each other out. The charge for each
bulk node is defined by the winding number w along
a contour l surrounding this node [59], as is shown in
Fig. 2(a) (see Supplemental Material [60] for details).
Possibly, these localized edge states are the remnants of
those in the first-order phase. In our specific model defined
in Eq. (1), they are robust provided the system is in the
nodal phase. Hence we may describe the low-energy
physics of each edge with a gapless Hamiltonian that is
defined only at ky ∈ ð−k−;−kþÞ ∪ ðkþ; k−Þ.
So we have established that MZMs emerge in both the

first-order and the nodal phase when Δsd ¼ 0. Edge states
in these two phases could be well described by a one-
dimensional massless Hamiltonian, with gapless points at
kcy ¼ π in the first-order phase, and at kcy ¼ �k� in the
nodal phase. Note that Hamiltonian Eq. (5) preserves chiral
symmetry Γ20 in the absence of Δsd, which guarantees that,
for any state ϕ with finite energy EðkyÞ there would be a
state Γ20ϕ (shorthand for ⊕j Γ20ϕj) with opposite energy
−EðkyÞ. Hence we can define the MZM basis for each edge
as fϕðkcyÞ;Γ20ϕðkcyÞgT . Instead of going into the details of
MZMs, we will attempt to construct an effective edge
Hamiltonian with a unified form.

First, multiplying Eq. (5) with ϕ†
jΓ10 on both sides,

summing over j and then adding to it the Hermitian
conjugating counterpart, we are then left with

M10 ¼
X
j

EðkyÞϕ†
jΓ10ϕj − T10ϕ†

jðϕj−1 þ ϕjþ1Þ; ð8Þ

where the normalization condition ϕ†ϕ ¼ 1 is used. One
could also multiply Eq. (5) with ϕ†

jΓ20Γ10, and follow the
same procedure as above, which would lead to

T10
X
j

ϕ†
jΓ20ðϕj−1 þ ϕjþ1Þ ¼ 0; ð9Þ

due to orthogonality condition ϕ†Γ20ϕ ¼ 0. At the gapless
point kcy, Eq. (8) reduces to

M10 ¼ −T10
X
j

ϕ†
jðϕj−1 þ ϕjþ1Þ: ð10Þ

After projecting Hamiltonian Eq. (4) onto the MZM basis
and utilizing the two equalities in Eqs. (9) and (10), one
arrives at the effective low-energy Hamiltonian for edge AB
or CD, given by

HEdgeðkyÞ ¼ v2ðkyÞs2 þ v3ðkyÞs3 þmsdðkyÞs1; ð11Þ

where

v2ðkyÞ ¼
X
j;fαβg

½MαβðkyÞ −MαβðkcyÞ�ϕ†
jΓ20Γαβϕj;

v3ðkyÞ ¼
X
j;fαβg

½MαβðkyÞ −MαβðkcyÞ�ϕ†
jΓαβϕj;

msdðkyÞ ¼ −2Δ2ðδ cos ky þ η − cos kcy − 2αΔÞ; ð12Þ

with indices fαβg taking f30; 31; 10g and Pauli matrices
s1;2;3 acting in the MZM basis. Wave functions of
MZMs—ϕj in Eq. (12)—could be obtained by solving
Eq. (5) in principle, although we don’t have to, given that it
is the mass gapmsd that we care foremost, and that it clearly
doesn’t depend on the specific form of ϕj. With the edge
Hamiltonian Eq. (11) being given, the condition when
second-order phases emerge can be determined by compar-
ing signs of mass gaps on intersecting edges, which we
shall detail in the following.
Let us consider rotating the basis in Eq. (1) to

Ψ0ðk0Þ ¼ UC4ΨðC4k0Þ, where k0 stands for coordinates in
the O − k0xk0y system defined in Fig. 1(a) and relates to k
through C4 rotation C4k0 ¼ k, namely, ð−k0y; k0xÞ ¼ ðkx; kyÞ.
Rewriting Hamiltonian Eq. (1) in this new basis, we would
have

BZ

0

0

S
it

e

0 1Scaled wave function amplitude

-1

0

1

-5 -2 1 4 7

(c)

(d)

(b)

(a)

FIG. 2. Edge states in the nodal phase. (a) Bulk nodes in BZ are
denoted by stars, and those in the same color have the same
topological charge. (b) Winding number for topologically distinct
nodes and its evolution with chemical potential. Clearly, only in
the nodal phase would the winding number take nonzero values.
(c) Energy spectrum in the cylinder geometry. Red lines denote
the four energy levels closest to zero and each of the lines is
doubly degenerate. (d) Variations of the (scaled) wave function
amplitude jϕjjwith lattice site j and wave vector ky for the energy
levels denoted by red lines in (c). The parameters chosen are
Nx ¼ 200, A ¼ 2, Δ0 ¼ Δ1 ¼ 1, Δ2 ¼ 0. In (c) and (d), μ ¼ 5.
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H¼1

2

X
k0
Ψ0†ðk0ÞH0ðk0ÞΨ0ðk0Þ;

H0ðk0Þ¼UC4HðC4k0ÞU−1
C4
¼hðk0ÞþΔsðk0ÞþΔsd

0ðk0Þ; ð13Þ

where Δ0
sdðk0Þ ¼ −2Δ2ðcos k0y þ δ cos k0x þ ηÞ and the last

equality in Eq. (13) is due to C4 symmetry of h and Δs
detailed in Eq. (6). Comparing the two Hamiltonians in
Eqs. (1) and (13), one may immediately conclude that the
edge Hamiltonian along edge AD or BC could be obtained
from Eq. (11) simply by replacing ky with k0y, followed by
modification of the mass term, which yields

HEdge
0ðk0yÞ ¼ v2ðk0yÞs2 þ v3ðk0yÞs3 þm0

sdðk0yÞs1; ð14Þ

with

m0
sdðk0yÞ ¼ −2Δ2ðcos k0y þ η − δ cos kcy − 2δαΔÞ; ð15Þ

and the definitions of v2 and v3 are given in Eq. (12). It is
obvious that gapless points in the two edge Hamiltonian,
HEdgeðkyÞ and H0

Edgeðk0yÞ, both reside at kcy. The second-
order phase therefore emerges when

msdðkcyÞm0
sdðkcyÞ < 0: ð16Þ

Additionally, we require Eq. (3) to be fulfilled, which
guarantees that the system falls into the first-order or nodal
phase when Δsd is switched off.
Further investigations on Eqs. (12) and (15) reveal that,

the mass terms msdðkcyÞ and m0
sdðkcyÞ are nothing but values

of ΔsdðkÞ and Δ0
sdðk0Þ at point kc ¼ ðkcx; kcyÞ that satisfies

ΔsðkcÞ ¼ 0, with kcy being the gapless point in the edge BZ.
Thus we may relate the criterion obtained from the edge
Hamiltonian with the bulk spectrum in Eq. (2). As
illustrated in Fig. 3, Eq. (16) actually requires Δsd and
Δ0

sd to take opposite signs at kc marked by stars, that is,

ΔsdðkcÞΔ0
sdðkcÞ < 0: ð17Þ

Substituting the expression of kcy into Eq. (16), we arrive at
the conditions for second-order phases,

jη − f1j < jf3j; ð18Þ

jμ − 4tαΔj <
����
2

ffiffiffi
2

p
A

1 − δ

����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f22 − ðη − f1Þ2

q
; ð19Þ

with f1 ¼ ð1þ δÞαΔ, f2 ¼ ð1 − δÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2Δ

p
and f3 ¼

ð1 − δÞð1 − αΔÞ. Equation (18) determines which kind of
pairing form could possibly induce the second-order phase,
while Eq. (19) establishes the relation of Fermi surfaces
with the pairing potential in this nontrivial phase. Indeed,
we observe that the nodal point kn (ΔsðknÞ ¼ ΔsdðknÞ ¼ 0)
of the superconducting order parameter, marked by a

magenta circle in Fig. 3, always lies between the two
Fermi surfaces in the second-order phase. This is verified
by the fact that Eq. (19) could also be obtained by requiring

ϵþðknÞϵ−ðknÞ < 0; ð20Þ

where ϵ� are the same as those in Eq. (2) and take zero
separately on the two Fermi surfaces. In addition, we also
note that Eq. (18) actually guarantees the existence of nodal
point kn. Therefore, one may determine when the system
resides in the second-order phase, either from Eqs. (18) and
(19), or from Eq. (20), as illustrated in Fig. 3. Following
these criteria, one may immediately conclude that sþ id
pairing favors the second-order phase while neither sþ d
nor sþ is pairing do.
The mixed-pairing state we consider above has been

extensively studied in iron pnictides, particularly 122
compounds [61–67] like Ba1−xKxFe2As2. In these materi-
als, the pairing symmetry is expected to change from a

0

/2

0

/2

0 /2 0 /2

(a) (b)

(d)(c)

FIG. 3. Determination of the second-order phase from the bulk
spectrum. (a)–(d) Fermi surfaces ε� ¼ 0, nodal lines of Δs, Δsd
and Δsd

0 in the first quadrant of BZ are plotted for different
chemical potential (μ) and sþ d pairing form (δ, η). Signs of the
pair ½ΔsdðkÞ;Δ0

sdðkÞ� are indicated in corresponding areas. The
system resides in second-order phases when the signs of Δsd and
Δ0

sd at kc (marked by stars in magenta) are opposite, or
equivalently, when the nodal point kn (marked by magenta
circle) of the pairing term lies between the two Fermi surfaces.
Distributions of MZMs for an 80 × 80 lattice are shown in the
insets, as well as several low-lying energy levels. Clearly, MZMs
(red points in the insets) are fourfold degenerate and separated
from other energy levels with a finite gap. In all the figures,
A ¼ Δ2 ¼ 0.5, Δ0 ¼ Δ1 ¼ 1.
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nodeless s� form around optimal doping (x ∼ 0.4) [68] to a
form with nodal gaps in the heavily hole-doped region, for
instance, KFe2As2 (x ¼ 1). In a narrow doping region
between the two cases, two different pairing states may
coexist with an additional π=2-phase shift at lower temper-
ature when TRS is spontaneously breaking [52,66,69]. The
main debate, however, centers around the heavily hole-
doped region, where multiple experiments suggest contra-
dicting pairing, either nodal s- [70,71] or d wave
[61,64,72,73]. Accordingly, the intermediate state would
exhibit either sþ is or sþ id symmetry, as was reported in
muon spin rotation experiment at doping level around x ¼
0.73 [74]. No consensus has been achieved as to which
specific form it would take, although several proposals
have been put forward to discriminate the two mixed
pairings [75–77]. In this regard, our study suggests an
alternative approach to tackle this issue, given that sþ id
could drive a RS into the second-order phase with MZMs
sitting at corners whereas sþ is pairing couldn’t. Once
sþ id pairing has been confirmed, it would be straightfor-
ward to fabricate the heterostructure as depicted in Fig. 1(a)
and to investigate MZMs being expected therein.
Meanwhile, we may also consider a hybrid Josephson

junction, as schematically shown in Fig. 1(b). The FeSC on
top with s� pairing and the cuprate SC at the bottom with
dx2−y2 pairing may introduce a mixed state of the form
sþ eiθd in the RS layer sandwiched between them. In the
Supplemental Material [60] we demonstrate that this kind
of pairing falls into the general form studied above, and
interestingly it always favors second-order phases except
when the phase difference θ of the two SCs takes 0 or π,
which corresponds to s� d pairing. To guarantee that the
phase difference never takes 0 or π, one may insert this
hybrid system into a single-junction rf SQUID [78] or a
two-junction dc SQUID [79], where θ may be tuned
through magnetic flux threaded into the interferometer.
Actually, it has been suggested that such a hybrid system
could naturally realize a junction with θ ¼ π=2 and thus
sþ id pairing order would develop at the interface [80].
Hybrid Josephson junctions containing conventional s-
wave SCs and FeSCs [81,82] or cuprate SCs [83,84] have
been successfully fabricated and well studied. We can
therefore expect the hybrid junction with an FeSC, RS, and
cuprate SC to be a promising platform for second-order
TSCs in the near future.
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