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We develop a low-energy effective field theory of a two-dimensional bosonic superfluid on the lowest
Landau level at zero temperature and identify a Berry term that governs the dynamics of coarse-grained
superfluid degrees of freedom. For an infinite vortex crystal we compute how the Berry term affects the
low-energy spectrum of soft collective Tkachenko oscillations and nondissipative Hall responses of the
particle number current and stress tensor. This term gives rise to a quadratic in momentum term in the Hall
conductivity, but does not generate a nondissipative Hall viscosity.
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Introduction.—It has been known since 1930 [1] that the
quantum-mechanical energy spectrum of a nonrelativistic
particle of mass m and unit charge in a constant magnetic
field B forms an infinite equidistant tower of highly
degenerate Landau levels separated from each other by
the cyclotron energy gap ωc ¼ B=m [2]. For electrons this
observation, together with the Pauli exclusion principle,
allows one to understand salient features of integer quan-
tum Hall fluids. Theoretically, in the limit of an infinite
cyclotron gap, one is left only with states occupying the
lowest Landau level (LLL). The LLL Hilbert space is a
natural starting point for formulating theories of strongly
correlated fermionic fractional quantum Hall liquids.
On the other hand, bosons respond to an external

magnetic field by forming quantum vortices, whose density
is fixed by the magnetic field, nv ¼ B=2π. At zero temper-
ature, the phase diagram of a homogeneous many-boson
system with an isotropic short-range repulsive interaction is
determined by the ratio of the density of bosons n to the
density of vortices nv, known as the filling fraction
ν ¼ n=nv. For ν≳ νcr ∼ 8 [3,4] bosons form a gapless
superfluid vortex crystal, while for ν≲ νcr the system
becomes an incompressible bosonic fractional quantum
Hall state, whose nature depends on the precise filling
fraction [5,6]. Within the crystalline phase, one distin-
guishes the regime of slow [7–10] and fast [4,11–16]
rotation, with nvξ2 ≪ 1 or nvξ2 ≫ 1 correspondingly,
where ξ is the superfluid coherence length [17,18]. In
the latter regime, an arbitrary number of bosons is accom-
modated by a single orbital, and the LLL approximation
can be applied in the regime ν > 1, in contrast to the
fermionic case. In fact, it is known since the seminal work
of Abrikosov [19] that the physics of the vortex lattice in
superconductors can be understood analytically within the
LLL approximation in the bosonic Ginzburg-Landau
theory.

In this Letter, we formulate and analyze a low-energy
effective field theory of a two-dimensional bosonic super-
fluid in the LLL regime. We discover that the existence of a
smooth LLL limit implies that in this regime the dynamics
of superfluid degrees of freedom is governed by what we
will term “the Berry Lagrangian”

LB ¼∓ 1

2
nεij∂ivj; ð1Þ

where n and vi denote the smooth superfluid density and
velocity, coarse grained over regions containing a large
number of quantized vortices. As is characteristic to a Berry
term, its contribution to the action depends on the trajec-
tories of the fluid particles, but not on the time it takes for
these trajectories to be traversed. The sign of the Berry term
(1) is fixed by the direction of the external magnetic field B.
The term (1) is odd under separate time-reversal T (t → −t)
and two-dimensional parity P (x ↔ y) transformations.
To the best of our knowledge, the term (1) has not

appeared in previous studies of superfluids in the LLL
regime. In this Letter, we focus our attention on the
implications of the Berry term (1) for the low-energy
physics of an infinite unpinned vortex crystal at zero
temperature. We determine how this term modifies the
dispersion of the collective Tkachenko wave [see Eq. (15)]
and demonstrate that it gives rise to a quadratic in
momentum term in the Hall conductivity [see Eq. (19)].
In addition, we find that this term generates a time-reversal
odd contribution to the stress tensor (17), but does not
produce a nondissipative Hall viscosity.
Our derivation of the Berry term is quite general and

suggests that such a term should also appear away from the
LLL limit, which is deferred to a future work. On the other
hand, our conclusions are not directly applicable in the
incompressible strongly correlated nonsuperfluid regime.
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Effective field theory of LLL superfluid.—Our starting
point is the microscopic theory of an interacting non-
relativistic spinless bosonic field ψ coupled to a Uð1Þ
gauge field Aμ and, for later convenience, an external
spatial metric gij. The Lagrangian is given by

L ¼ i
2
ψ†D

↔

tψ −
gij

2m
Diψ

†Djψ þ gB
4m

ψ†ψ þ LintðnÞ; ð2Þ

where Dμψ ¼ ð∂μ − iAμÞψ , g denotes the gyromagnetic
factor of elementary bosons, and B ¼ εij∂iAj is the
magnetic field [20]. We assume that the interaction
Lagrangian depends only on the density n ¼ ψ†ψ.
First, we will work in flat space and introduce the

complex spatial coordinates z ¼ xþ iy and z̄ ¼ x − iy.
In these coordinates, the free part of the microscopic
Lagrangian is

L0 ¼
i
2
ψ†D

↔

tψ −
2

m
Dzψ

†Dz̄ψ þ ðg − 2Þ B
4m

ψ†ψ : ð3Þ

In the symmetric gauge a constant background magnetic
field B0 results from Az ¼ −iB0z̄=4 and Az̄ ¼ iB0z=4. We
notice that g ¼ 2 is special since in this case the last term
drops out and the energy of the LLL vanishes. In fact, in
this case the LLL is degenerate even in inhomogeneous
magnetic field on arbitrary curved surface [21,22]. We can
project the Lagrangian (3) to the LLL by taking the limit
m → 0, while keeping the magnetic field B fixed resulting
in a diverging cyclotron frequency ωc. Using the Hubbard-
Stratonovich transformation, we rewrite now Eq. (3) as

L0 ¼
i
2
ψ†D

↔

tψ − χ†Dz̄ψ − χDzψ
†

þm
2
χ†χ þ ðg − 2Þ B

4m
ψ†ψ : ð4Þ

In the limitm → 0, the equation of motion for the Lagrange
multiplier χ† produces the holomorphic condition
Dz̄ψ ¼ 0, which is solved by a LLL wave function
ψLLLðz; z̄Þ ¼ fðzÞe−jzj2=ð4l2BÞ, where we introduced the mag-
netic length lB ¼ ffiffiffiffiffiffiffiffiffiffi

1=B0

p
. Notably, in this construction the

LLL limit is smooth only for g ¼ 2. While for Dirac
electrons g ¼ 2 is the physical value of the gyromagnetic
factor, for bosons g ¼ 2 is not a natural choice. For
example, neutral spinless bosons rotating with angular
frequency Ω ¼ B=2m couple to the Uð1Þ source minimally
and thus in that case g ¼ 0. Fortunately, from Eq. (2) one
readily observes that given the Lagrangian for g ¼ 2 fixes
the theory for any value of g

Lgð…; A0Þ ¼ Lg¼2

�
…; A0 þ

g − 2

4m
B

�
: ð5Þ

So our strategy in the following is to construct the low-
energy effective theory first for g ¼ 2, making use of the

smoothness of the LLL, and subsequently transform the
parameter g to its physical value using Eq. (5).
In this Letter, we use boson-vortex duality [23,24] to

derive the low-energy effective theory of a superfluid on
LLL. In this formulation superfluid degrees of freedom are
encoded in a (2þ 1)-dimensional gauge field aμ, while
quantum vortices are charged particles with respect to this
field. In this language, a vortex crystal is a two-dimensional
Wigner solid of dual point charges embedded in a static
neutralizing background and a homogenous dual magnetic
field fixed by the superfluid density [25]. The superfluid
part of the LLL effective theory can be derived from the
microscopic model (4) as follows: First, we parametrize the
bosonic field ψ ¼ ffiffiffi

n
p

eiθ, where θ is the phase bosonic
field. Averaging now over regions with large number of
vortices, such that their total charge is fully compensated by
the charge density of a static neutralizing background, the
dual gauge Lagrangian is defined as the Legendre trans-
formation L̃0 ¼ L0 − πμ∂μθ, where πμ ¼ ∂L0=∂∂μθ. In
the LLL limit m ¼ 0 and g ¼ 2 one finds [26]

L̃LLL;g¼2
0 ¼ εμνρAμ∂νaρ þ

1

2b
ei∂ib; ð6Þ

where the dual magnetic and electric fields b ¼ εij∂iaj and
ei ¼ ∂tai − ∂iat were defined in terms of the Uð1Þ particle
number current jμ ¼ δS=δAμ ¼ εμνρ∂νaρ. It is straightfor-
ward to check that the change of the sign of the background
magnetic field B0 → −B0 modifies the Lagrangian (4)
resulting in the antiholomorphic LLL condition Dzψ ¼ 0
which in turn reverses the sign of the second term in the
dual Lagrangian (6). By introducing now the superfluid
velocity

vi ¼ ji=n ¼ −εijej=b ð7Þ

and performing integration by parts, we can cast this term
into the form (1). In the gauge theory language the Berry
term is linear in the electric field and thus does not affect the
Hamiltonian. Because of this term, however, the Poisson
brackets in the LLL regime should differ from the canonical
structure of the Hamiltonian theory in the Tkachenko
regime derived in Refs. [27,28].
It is straightforward to generalize the above duality

transformation to the case with m ≠ 0 and g ≠ 2. We start
from Eq. (4) and follow the steps above

L̃0 ¼
me2

2b
þ L̃LLL;g¼2

0 þ ðg − 2Þ
4m

Bb: ð8Þ

Hence, the coefficient of the Berry term does not depend on
the values of g and m. In the LLL limit the electric term
me2=ð2bÞ drops out and the dynamics of the superfluid is
governed only by the Berry term.
Alternatively, one can derive the effective theory (8)

from the general coordinate (diffeomorphism) invariance

PHYSICAL REVIEW LETTERS 122, 235301 (2019)

235301-2



which is inherited from the microscopic model (2). In the
dual theory the coupling of bosons to the Uð1Þ source
is encoded in the mixed Chern-Simons (CS) action
SCS ¼

R
Ada. It was shown, however, in Ref. [29] that

for m ≠ 0 and g ≠ 0 the gauge field Aμ does not transform
as a one-form under time-dependent spatial diffeomor-
phisms and thus on its own the mixed CS action is not
general coordinate invariant. To circumvent this problem in
the theory with g ¼ 2 we introduce the improved gauge
potential Ãμ that transforms as a one-form [29]

A0 → Ã0 ¼ A0 −
m
2
gijvivj −

1

2
εij∂ivj;

Ai → Ãi ¼ Ai þmvi; ð9Þ

where the velocity field was defined in Eq. (7). The
improved mixed CS term is invariant under diffeomor-
phisms and reads

LC̃S;g¼2 ¼ Ãda ¼ Adaþmgijeiej
2b

−
1

2
b∇i

�
ei

b

�
; ð10Þ

where ∇i is the Levi-Civita covariant derivative. To get the
diffeoinvariant mixed CS term in the theory with g ≠ 2 we
use Eq. (5). In flat space the end result reproduces Eq. (8)
up to a surface term.
How does the interaction term Lint affect the dual theory?

As long as it depends only on the density, it is general
coordinate invariant on its own and its role in the duality
transformation is completely passive. The Lagrangian
of the dual theory with this type of interactions is
L̃ ¼ L̃0 þ LintðbÞ.
Angular momentum on LLL.—Taking the derivative of

the dual effective action with respect to Ai one finds the
particle number current

ji ¼ δS
δAi

¼ −εijej þ
g − 2

4m
εij∂jb ¼ nvi þ g − 2

4m
εij∂jn:

ð11Þ

In a Galilean-invariant system the current ji fixes uniquely
the momentum density [30]

T0i ¼ mji −
g

4
εij∂jn: ð12Þ

Substituting now Eq. (11) into this equation and taking the
limit m → 0, the angular momentum in the LLL superfluid
is Jz ¼

R
d2xϵijxiT0j ¼ −N, where N is the total number

of elementary bosons. Thus, we recover the known result
that the angular momentum of the LLL superfluid is given
in absolute value by the number of particles [26]. In the
studies of rotating neutral superfluids in the LLL approxi-
mation, it is interpreted as a universal deviation of the

angular momentum in the lab frame from the solid-body
prediction (see Ref. [31], and references therein).
Infinite vortex lattice in the LLL regime.—Now we are

ready to include the physics of vortices. In an infinite two-
dimensional system in a magnetic field quantum vortices in
a superfluid form a triangular Abrikosov lattice. The
effective Lagrangian of the vortex degrees of freedom used
here is inspired by Ref. [25], where the dual effective theory
of a vortex crystal (at g ¼ 0) was constructed away from the
LLL limit. The effective theory of an infinite vortex crystal
(VC) analyzed in this Letter is [32]

LVC ¼ me2

2b
þ 1

2b
ei∂ibþ ϵμνρAμ∂νaρ þ

ðg − 2Þ
4m

Bb − εðbÞ

−
B0

2
bϵijuiDtuj þ B0eiui − EelðuijÞ; ð13Þ

where εðbÞ is the internal energy density which is fixed by
the form of the interaction Lagrangian Lint, ui denotes the
coarse-grained displacement of vortices from their equi-
librium positions, and uij ¼ ∂ðiujÞ − ∂kui∂kuj=2 is the
strain tensor. The first line describes the superfluid sector
discussed above. The only difference is that here we
introduced a modified Uð1Þ source. The temporal compo-
nent A0 ¼ A0 þ ðg − 2ÞB0=4m measures the chemical
potential from the LLL, while the spatial part Ai is set
to vanish in the ground state. The second line encodes the
physics of vortices: the Magnus term governs the dynam-
ics, the second term measures the dipole energy density,
and the last term defines the elastic properties of the
triangular lattice which to lowest order in derivatives
coincide with the elastic energy density of an isotropic
medium and thus depend only on the compressional and
shear bulk moduli C1 and C2 (see Refs. [17,25] for details).
Expanding now around ei ¼ 0 and the minimum b ¼ n0 of
εðbÞ, to quadratic order the Lagrangian in the absence of
the Uð1Þ source is

Lð2Þ
VC ¼ −

B0n0
2

ϵijui _uj þ B0eiui − Eð2Þ
el ð∂uÞ − ε00

2
δb2

þme2

2n0
þ 1

2n0
ei∂iδb; ð14Þ

where δb ¼ b − n0 and the speed of sound cs is fixed by
ε00 ¼ mc2s=n0. In the power counting defined in Ref. [25]
the first line defines the leading order Lagrangian which
gives rise to a transverse Tkachenko wave with a gapless
quadratic dispersion relation [17,27,33]. The electric and
the Berry terms are the next-to-leading order (NLO)
corrections within this power-counting scheme. Here, we
investigate the LLL regime m → 0, where the electric term
drops out. In addition, the speed of sound is scaled to
infinity such that ε00 ¼ mc2s=n0 remains constant. While
one can write a number of additional NLO terms that
preserve P and T separately, we are not aware of other NLO

PHYSICAL REVIEW LETTERS 122, 235301 (2019)

235301-3



P- and T-odd terms allowed in this system except for the
phonon Hall viscosity introduced in Ref. [34]. The fate of
the phonon Hall viscosity term in the LLL regime is unclear
now and it is not discussed here.
By solving the equations of motion for a plane wave

propagating along, say, the x axis we find the elliptically
polarized gapless Tkachenko mode with the dispersion
(k ¼ −i∂x, ω ¼ i∂t)

ω2 ¼ 2C2ε
00

B2
0

k4 −
2C2ε

00

B3
0

k6 þOðk8Þ: ð15Þ

Because of the NLO Berry term, the dispersion starts to
deviate from the quadratic form at the momenta of the order
of the inverse of the magnetic length, k ∼ l−1B . This
correction is absent in the results of Baym [Eq. (14) in
Ref. [17] ] and Sonin [Eq. (3.128) in Ref. [18] ], which give
a strictly quadratic dispersion in the LLL limit defined
above. Note that the Lagrangian (13) contains only the
minimum number of terms required by Galilean invariance
and the regularity of the LLL limit; additional terms may
change the coefficient of the k6 term in Eq. (15). In [26] we
compare the equations of motion derived from the
Lagrangian (14) with the hydrodynamic equations found
in Ref. [17].
By using the Lagrange coordinates Xaðt;xÞ frozen into

the vortex lattice instead of displacements uiðt;xÞ, the
effective theory of the vortex crystal can be cast into the
general coordinate invariant form [25]. In this formula-
tion the effective action of the vortex crystal is
SVC ¼ R

dtd2x
ffiffiffi
g

p
LVC with

LVC ¼mgijeiej
2b

þ 1

2b
gij∇ibej þ ϵμνρAμ∂νaρ þ

ðg− 2Þ
4m

Bb

− εðbÞ− πnvεμνρϵabaμ∂νXa∂ρXb − EelðUabÞ; ð16Þ

where Uab ¼ gij∂iXa∂jXb with a ¼ 1, 2. Remarkably, the
P- and T-odd Magnus and dipole terms combine into a
single topological term. Here we focus on the P- and T-odd
Berry term which depends on the metric and thus modifies
the stress tensor Tij

B ¼ 2δSB=ð ffiffiffi
g

p
δgijÞ

Tij
B ¼ 1

2
gij∇kðlog bÞek −∇ðiðlogbÞejÞ þ 1

2
gijgkl∇kel

¼ −
1

2
ðgikεjl þ gjkεilÞvk∇lnþ n

2
gijεkl∇kvl; ð17Þ

where the second line was obtained by using the duality
dictionary and the two-dimensional vector identity
ðgikεjl þ gjkεilÞa½kbl� ¼ gijεklakbl. Since in the LLL limit
at g ¼ 2 the momentum density (12) reduces to
T0i ¼ −εij∂jn=2, it is straightforward to check that the
Berry stress tensor (17) transforms properly under Galilean
boosts [26]. In the case g ≠ 2, the last term on the first line

of Eq. (16) gives a modification to the pressure ΔTij
LLL ¼

−ðg − 2ÞBbgij=ð4mÞ which is consistent with general
relations derived in Appendix B of Ref. [30].
Hall responses.—Being odd under P and T, the Berry

term affects the nondissipative Hall response of the vortex
crystal. Here, we discuss the linear Hall response of the
particle current and stress tensor in the LLL regime. We
mostly focus on the case g ¼ 2, where all response functions
are regular. The case of g ≠ 2 is discussed in detail in [26].
Given our definition of the Uð1Þ electric field

Ei ¼ ∂tAi − ∂iAt, the conductivity tensor is defined as

σijðω;kÞ ¼ −
δji

δEj
¼ δji

iωδAj
¼ δji

ikjδAt
: ð18Þ

Substituting now linearized equations of motion derived
from the Lagrangian (13) into the definition of the current
(11), we find with the help of Eq. (18) in the LLL m → 0

limit the Hall conductivity σH ¼ ðσxy − σyxÞ=2

σHðω; kÞ ¼ n0
B0

−
n0
2B2

0

k2 þOðk4Þ: ð19Þ

The quadratic term in momentum originates from the NLO
Berry Lagrangian.
The geometric response of the stress tensor to the metric

allows one to define the elasticity and viscosity tensors λijkl

and ηijkl

δTij ¼ −λijklδgkl − ηijklδ_gkl: ð20Þ

The Hall viscosity tensor ηijklH [35,36] is defined as the odd
part of the viscosity tensor under ij ↔ kl

ηijklH ¼ 1

2
ðηijkl − ηklijÞ: ð21Þ

This nondissipative response is ubiquitous in two-
dimensional systems which break time-reversal symmetry
[35–38]. In a rotation-invariant system the Hall viscosity
has only one independent component [35,36] which we
denote as ηH. To compute this response function we first
derive from the Lagrangian (16) the equations of motion
in the LLL regime m ¼ 0 and at g ¼ 2

−
1

2
gij∇i∇j log bþ πnvεijϵab∂iXa∂jXb − B ¼ 0; ð22Þ

1

2
ffiffiffi
g

p εjk∂tð
ffiffiffi
g

p
gkl∇l log bÞ −

1

2
∂j

gkl∇kel
b

− ε00ðbÞ∂jbþ 2πnvϵab _X
a∂jXb − Ej ¼ 0; ð23Þ

πnvεμνρϵab∂μaν∂ρXb −
1
ffiffiffi
g

p ∂j

�
ffiffiffi
g

p ∂Eel

∂Uab g
ij∂jXb

�
¼ 0

ð24Þ
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and linearize them around the flat space solution b ¼ n0,
ei ¼ 0, and Xa ¼ δai x

i. To extract the Hall viscosity it is
sufficient to restrict the perturbation δgijðtÞ to be traceless
and homogenous in space. An explicit calculation shows
that such a perturbation δgijðtÞ does not affect linearized
equations of motion. This result implies that the variation
of the stress tensor, derived from the Lagrangian (16), with
respect to the time derivative of the homogeneous traceless
metric is zero and thus the Hall viscosity must vanish.
This conclusion does not change if one generalizes the
calculation to the case with g ≠ 2.
Galilean invariance gives rise to relations between the

conductivities and viscoelastic response functions [39,40].
In the LLL limit m → 0 and at g ¼ 2, where all con-
ductivities are regular, the Hall viscosity is completely
fixed by the Hall conductivity [30]

ηH ¼ 1

2
B2
0∂2

kσHðkÞ þ
1

2
B0σHðk ¼ 0Þ: ð25Þ

After substituting into this relation the result (19), we find
ηH ¼ 0. For g ≠ 2 the LLL limit is not smooth which leads
to singular terms in the conductivity tensor. As a result, the
simple relation (25) is not applicable anymore and must be
replaced by a more complicated relation that involves the
singular part of the longitudinal conductivity; for a detailed
discussion we refer to [26]. Nevertheless, the Hall viscosity
derived from that relation is still zero, which agrees with the
result of the geometric calculation.
In summary, the P- and T-odd NLO Berry term fixes in

the LLL regime the quadratic in momentum term in the
Hall conductivity, but does not give rise to the dissipation-
less Hall viscosity.
Conclusions.—In a two-dimensional bosonic superfluid

the existence of a smooth LLL limit allowed us to identify a
Berry term in the low-energy effective theory. Since the
coefficient of this Berry term does not depend on the mass
of the elementary boson it appears that it survives in a
bosonic superfluid in magnetic field even away from the
LLL limit. As a result, in the effective theory developed
here the crossover of a vortex crystal from the LLL to the
Tkachenko regime is controlled by the mass of the boson
m. While in the LLL limit the dynamics of the coarse-
grained superfluid is governed by the Berry term ei∂ib=2b,
in the Tkachenko limit m → ∞ the electric term me2=2b
dominates.
The Berry term can be interpreted as the coupling

of the dynamical electric field ei to the dipole density
di ¼ ∂i log b=2. From Eq. (12), in the LLL limit
m → 0 and at g ¼ 2 the dipole density is di ¼ εijT0j=b,
i.e., proportional and perpendicular to the momentum
density T0i.
In the future it would be interesting to determine the

fate of the phonon Hall viscosity term [34] in the LLL
regime and find if the theory developed here is related to

hydrodynamics of a vortex fluid in an incompressible
liquid [41]. It would be also useful to understand the role
of the Berry term in vortex crystals in two-dimensional
fermionic chiral pþ ip superfluids, where Cooper pairs
have the gyromagnetic factor g ¼ 2 and the geometric spin
s ¼ 1 [38,42,43].
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