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Effective magnetic fields have enabled unprecedented manipulation of neutral particles including
photons. In most studied cases, the effective gauge fields are defined through the phase of mode coupling
between spatially discrete elements, such as optical resonators and waveguides in the case for photons. Here,
in the paradigm of Bloch-wave modulated photonic crystals, we show the creation of effective magnetic
fields for photons in conventional dielectric continua for the first time, via Floquet band engineering. By
controlling the phase and wave vector of Bloch waves, we demonstrated the anomalous quantum Hall effect
for light with distinct topological band features due to delocalized wave interference. Based on a cavity-free
architecture, in which Bloch-wave modulations can be enhanced using guided resonances in photonic
crystals, the study here opens the door to the realization of effective magnetic fields at large scales for optical
beam steering and topological light-matter phases with broken time-reversal symmetry.
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Photons, being charge neutral, are not susceptible to
magnetic fields. Recently, several methods have been
proposed to create effective magnetic fields for photons,
including chiral mode coupling [1] and dynamic index
modulation [2], leading to topological photonic states [3,4]
and nonreciprocal light propagation [5,6]. In the scheme of
dynamic index modulation, the effective gauge field is
equivalent to the phase of a point modulation that is exerted
to mediate the coupling between two spatially localized
optical resonators with different frequencies [2]. Such a
revelation enables analogies between modulated optical
resonator lattices and condensed matter systems under
magnetic fields via commonly used tight-binding models,
but it nonetheless imposes challenges for experimental
realization and practical uses. However, it is unknown how
to create effective magnetic fields for photons in a con-
tinuum of conventional dielectrics, where electromagnetic
fields are delocalized, invalidating the notion of local phase
of mode coupling for effective gauge fields. Here, we study
a new paradigm of dynamically modulated continua, which
are photonic crystals subject to Bloch-wave modulations, in
which spatial gauge fields for photons are revealed via
Floquet band engineering [7,8]. In this approach, the
continuum modulation induces static-band hybridization,
leading to an equation of motion for electromagnetic waves
that resembles that of charged particles under magnetic
fields.

The paradigm of modulated electromagnetic continuum
not only extends the concept of effective magnetic fields for
photons to a largely unexplored yet experimentally acces-
sible regime, but it also leads to topological photonic effects
that have not been demonstrated before. As we will show, by
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selecting the wave vectors of Bloch-wave modulations, the
net effective magnetic flux through the unit cell of photonic
crystals vanishes. Nevertheless, the Floquet bands can still
attain nonzero Chern numbers in the presence of time-
reversal symmetry breaking caused by the dynamic modu-
lation. This result represents the first anomalous quantum
Hall effect for light in Floquet engineered photonic systems.

Here, we developed a first-principles based formalism
along with ab initio simulations to reveal unique topologi-
cal band features in Bloch-wave modulated photonic
crystals due to delocalized wave interference. We also
propose to use guided resonances or bound states in the
continuum [9-11] to enhance the strength of Bloch-wave
modulations that can be readily implemented with highly
transducing optical or acoustic pump fields [12,13]. As a
result, the proposed paradigm of a modulated continuum
here opens the door to large-scale realization of effective
magnetic fields for photons in normal dielectrics for new
types of beam steering, dynamic signal processing, and
topological states with broken time-reversal symmetry,
which are highly tunable and reconfigurable via controlling
the parameters of Bloch waves.

To study photonic crystals under continuum modula-
tions, we start from Maxwell’s equation with isotropic and
temporally periodic permittivity e(r, ) = e(r) + (r, 7):

l%(e(rg)E) _ (_ivx iVx)(IIj]I) ()

Here, ¢(r) is the spatially periodic permittivity that defines
the static photonic crystal, and 5(r,7) =4&(r)cos|w?+ ¢(r)]
is the temporal modulation of the permittivity with the
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frequency w, amplitude 6(r), and phase ¢(r): all of which
are real. Note that this form represents the most general
monochromatic modulations. We have set ¢ = o = 1 and
1 = 1 as for most dielectric materials at optical frequencies.
Because of the time periodicity of the permittivity, accord-
ing to the Floquet theorem [14], the eigenmodes of Eq. (1)
can be found by decomposition of the fields into harmonics
of the modulation frequency, i.e.,

E H T — Y — e—i)(lJrinwt’
Yn
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where y is the quasifrequency [15]. We coin the resulting
time-independent eigenmode equation the Floquet-
Maxwell equation.

When the modulation has the form of Bloch waves [i.e.,
8(r)e™) = u(r)e'd™] and u(r) is a periodic function [note
that ¢(r) needs not be q - r], we call such a modulated
dielectric structure the Floquet photonic crystal. If the
periodicities of u(r) and the static photonic crystal are
commensurable, then by applying a gauge transformation
Ugauge :Wn — ey . the Floquet-Maxwell equation
becomes spatially periodic; thus, the eigenvalue y can be
labeled by a Bloch-wave vector k, forming the Floquet
band structure [15]. According to this formalism, the
generation of the Floquet band structure, to the leading
order, can be intuitively understood as the result of
modulation induced static-band hybridization after fre-
quency and momentum shift of the bands by @ and q,
respectively. Because of the nonvanishing momentum
of the modulation, the Floquet band structure, with infi-
nitely repeated branches (i.e., y +nw, Vn, is also a
solution of the Floquet-Maxwell equation), has the property
2(k +q) = (k) - .

With a spatially varying modulation phase ¢(r), time-
reversal symmetry in modulated photonic crystals is
explicitly broken because the modulated permittivity is
not invariant under time reversal t — —t for arbitrary
positions. We use Floquet band engineering (i.e., modula-
tion induced static-band coupling) to derive an effective
gauge field for photons. For this purpose, we consider two
static bands under dynamic modulations with a frequency
close to the band gap that is larger than the bandwidth of
each band. In this case, one can write down an approximate
coupled-band equation resulted from the Floquet-Maxwell
equation,

0*H 1 o .
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where H, , are the magnetizing fields associated with the
two bands. The effective gauge field for photons can be

identified by comparing the equation of motion for the
electromagnetic fields of one band with the Hamiltonian of
charged particles in the presence of gauge fields, i.e.,
H = (-=iV — qA)*/2m, where the gauge field is the
imaginary coefficient of the term that is linear in V().
Using this method, we find

Aur(r) = élm{v : (gei‘f’v (Vge_i‘f’)) } ()

for transverse electric modes (the - represents the scalar
product between the first V and the last V) and

2 o6 .06 _.
Aeff(r) = ;Im{vz (; €I¢V?€_l¢> } (5)

for transverse magnetic (TM) modes in two-dimensional
photonic crystals, respectively [15].

From Egs. (4) and (5), it is remarkable that the effective
gauge field is largely determined by the modulation phase,
which is similar to the case of discretely modulated
resonator lattices [2]; it is zero if ¢(r) = const.
However, in the continuum, the effective gauge field can
be defined in space by the modulation phase point to point;
whereas in resonator lattices, it is implicitly related to the
modulation phase through a line integration. One also finds
that, for Bloch-wave modulations with u(r) having the
same periodicity as the static photonic crystal, A (r) is
periodic and the net effective magnetic flux through a unit
cell vanishes. As we will show next, for certain Floquet
photonic crystals, even though the net magnetic flux is zero
through a unit cell, the Floquet bands attain nonzero Chern
numbers. This represents a photonic analogue of the
anomalous quantum Hall effect [25], which is distinct
from the photonic analogues of the quantum Hall and
quantum spin Hall effects proposed in Ref. [2] and Ref. [1],
respectively.

The example of the Floquet photonic crystal we studied
begins with a two-dimensional photonic crystal with a
triangular lattice (lattice constant a) of dielectric rods
(r = 0.27a) with relative permittivity €, = 12 (correspond-
ing to silicon or gallium arsenide) in a background with
relative permittivity of €, = 2 (corresponding to silicon
dioxide) [Fig. 1(a)]. A honeycomb sublattice (lattice con-
stant 3a) is created inside the triangular lattice, which
consists of smaller rods (r = 0.145a, €, = 12) and holes
(r =0.27a, ¢, = 1). The band structure of the TM modes
calculated using the plane-wave expansion method [26] is
shown in Fig. 1(b), and the out-of-plane electric field of the
modes of highlighted band 2 at I" and K points is shown in
Fig. 1(c). As time-reversal symmetry is not broken in the
static photonic crystal, all the bands are topologically trivial
with zero Chern numbers.

Next, we introduce temporal modulations of permittivity
in order to couple bands 1 and 2 in Fig. I(b) to create
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FIG. 1.

Effective magnetic fields in the Floquet photonic crystal. (a) The Floquet photonic crystal consists of a static photonic crystal

and the permittivity modulations of three Bloch waves with momenta equal to the three K points and phases ¢, , 5. Black, gray, and
white areas in the static photonic crystal have relative permittivities of 12, 2, and 1, respectively. (b) Band structure of the TM modes of
the static photonic crystal. The permittivity modulation with frequency @ and Bloch momentum q (green arrow) is used to couple the
two highlighted bands (red). (c) Out-of-plane electric field in the unit cell corresponding to the modes of band 2 at I and K points.
(d) Distribution of the effective magnetic field B induced by the Bloch-wave modulations for ¢p; = 0, ¢, = 27/3, and ¢53 = 4x/3.
The net effective magnetic flux through the Wigner-Seitz unit cell is zero. (e) Floquet band structure of the modulated photonic crystal,
which is formed from hybridization of static bands 1 and 2 of Fig. 1(b). The Chern number of each band is indicated for the modulation
parameters specified in the text. (f) Berry curvature in the Brillouin zone for the top blue Floquet band in Fig. 1(e).

topologically nontrivial Floquet bands. The frequency of
the modulation is slightly larger than the band gap between
the two bands, and its spatial profile has the following form:

8(r)e?m ="

J=1

uj(r)ei(kfr-s-cﬁj),

(6)

where u, , 3(r) are functions with the same spatial periodicity
as the static photonic crystal, and we choose the coordinate
origin at the center of an air hole. The modulation of Eq. (6) is
a superposition of three Bloch waves, which could lead to a
rotating distribution of permittivity. For example, if we
consider the case where K, 3 are the three equivalent K
points in the Brillouin zone, with u; 5 5(r) = i(r) possessing
120° rotational symmetry and ¢; = [2(j — 1)z]/3, then we
have Ryype(r,t) = e(r,t —2x/3w), where Ryype is the
operation of 120° clockwise rotation in real space. As such,
by adjusting the relative phase between the Bloch waves, we
can effectively circulate the permittivity and change its
chirality.

Meanwhile, because k; —k; are reciprocal lattice vec-
tors, 6(r)ei¢(r) is, by itself, of the Bloch-wave form, with a
Bloch-wave vector of q = k;, V j. The effective magnetic
field for band 2 induced by the modulation is calculated

using By (r) = V x A (r) and Eq. (5) for i(r)  e(r)?
and ¢; = [2(j — 1)x]/3, which is shown in Fig. 1(d). The
net magnetic flux through the Wigner-Seitz cell is zero,
as expected. Figure 1(e) shows the calculated TM
Floquet bands (with two repeated branches) by coupling
static bands 1 and 2 with modulation parameters
w = 0.0491 x 2zc/a, ¢; =1[2(j—1)x]/3, and @(r) =
0.25 (in dielectrics) or O (in air). We see that K and K’
points are no longer equivalent due to the momentum-
carrying modulation. Although the net magnetic flux
through a unit cell is zero, we find each Floquet band
has a nonzero Chern number of C = 41 [15], with the
Berry curvature of one Floquet band shown in Fig. 1(f).
This result represents a photonic analogue of the anoma-
lous quantum Hall effect [25] realized in a structure beyond
tight-binding models, and it indicates the existence of one-
way edge modes in the Floquet band gap [27], which are
truly robust against any structural defects.

We numerically demonstrate the anomalous topological
edge mode through a finite-difference time-domain
(FDTD) simulation using Maxwell’s equation. The full
simulation domain is shown in Fig. 2(a) with a = 0.37 ym.
The boundaries of the simulation domain are composed of
perfectly matched layers. The Floquet photonic crystal
occupies part of the simulation domain with an edge at

233904-3



PHYSICAL REVIEW LETTERS 122, 233904 (2019)

ik,r
u(rye™

(

QO
~

8
E 6
S
= gk
0 E
(b)
aF
797
S ap
- 2k
0 ‘ ‘
2» T=034ps
g
S a4t
- 2k
0 ‘ ‘
2 T=0.54ps | g™
g
S a4t 0
-~ 2+
oL ‘ __| Emin
2» T=071ps
g
S af
= 5l
0 ‘ :
8 T=0.95ps
E 6
S ar
- 2+
ol y : : # R . ; f
0 5 10 15 20 25 30 35 40
x(pem)
(c) deﬁect
8 v
z° i
54
=2
0 :
0 5 10 15 20 25 30 35 40

x(pm)

FIG. 2. Anomalous topological edge mode. (a) Full photonic
structure used in the FDTD simulation with three Bloch-wave
modulations with phase lagging of 27z/3. The star indicates the
location of the point source. (b) Propagation of the electric field
E, excited by the TM-polarized continuous-wave point source. A
left-propagating one-way mode exists on the edge (y ~ 6 ym) of
the Floquet photonic crystal. (¢) Reflection immunity of the one-
way edge mode in the presence of a defect. Here, the defect is
created by removing a small dielectric rod on the edge.

y ~ 6 um. The applied temporal modulation is the same as
that used for the calculation of the Floquet band structure
above. A TM-polarized continuous-wave point source with
a frequency of w,/2z = 0.2549¢/a = 206.7 THz on the
edge of the Floquet photonic crystal is used to excite the
electromagnetic waves. The time evolution of the excited
electric field is shown in Fig. 2(b), where a one-way edge
mode can be clearly identified, along with bulk excitations
due to the incomplete Floquet band gap, which can be
optimized by further engineering of the photonic crystal
and temporal modulation. When the edge mode encounters
a defect, it keeps unidirectional propagation without
reflection [Fig. 2(c)], which is evidence of topological
protection. Note that the appearance of a one-way edge
mode after the defect is not due to the reexcitation by bulk
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FIG. 3. Phase diagram of the Floquet photonic crystal. (a) Chern

number of the higher frequency band of the Floquet two-band
model for varying ¢, and ¢; (¢, = 0). (b) Effective magnetic
field in the Wigner-Seitz cell corresponding to the phases
indicated by points 1 (4x/3,2z/3), 2 (3z/4,7/4), and 3
(7, 7). Figure 1(d) corresponds to point (27/3,4x/3). For the
calculation of the effective magnetic field, we used ii(r) « e(r)?
to remove the higher order texture due to static permittivity
distribution in the photonic crystal.

fields because of its phase coherence, whereas the bulk
fields have a fluctuating phase distribution along the edge.

The topological properties of Floquet photonic crystals
can be controlled by the phase of Bloch waves, which also
determines the distribution of the effective magnetic field in
real space. Figure 3(a) shows a phase diagram of the model
above, where topologically different phases with the Chern
number ranging from O to -2 exist. The distribution of the
effective magnetic field in the Wigner-Seitz cell for a few
phases is shown in Fig. 3(b). Contrary to the tight-binding
model of the anomalous quantum Hall effect [25], where
the sign of the Chern number is related to the chirality of
the electron hopping amplitude, the sign of the Chern
number in this continuum model is not directly related
to the chirality of modulations (i.e., ¢35 > ¢, > ¢p; or
¢, > ¢p3 > ¢;), and the two chiralities have very different
Chern number distributions. We also find that, if the
modulation strength is increased, a positive Chern number
appears around ¢, = ¢, = ¢ =0 mod 2z [15], which
is remarkable because, intuitively, the Chern number is
expected to be zero when the chirality of modulation is
absent. These novel topological band features in Floquet
photonic crystals are largely due to the delocalized wave
interference in the continuum, and they are difficult to
produce in tight-binding types of systems.

Using Bloch-wave modulations to realize dynamic beam
steering and topological photonic states for which the
property can be reconfigured by controlling the phase
and wave vector of Bloch waves has practical significance.
Bloch waves are eigenmodes of periodic structures and can
be naturally excited by pumps with the frequency and wave
vector that satisfy the dispersion relation. When multiple
Bloch waves are used, the relative phases can be controlled

233904-4



PHYSICAL REVIEW LETTERS 122, 233904 (2019)

by continuously tunable phase shifters. Such Bloch-wave
induced permittivity modulations can be generated through
nonlinear optical effects or optomechanical interactions
with optical and acoustic traveling waves, respectively. By
trapping the optical or acoustic pump waves in guided
resonances of photonic crystals [9-11], one can signifi-
cantly enhance the modulation strength in a large area with
experimentally available pump power [15]. Although, in
this Letter, we considered modulation induced interband
coupling, low-frequency mechanical modulations are more
suitable for intraband coupling, which might also result in
nontrivial Floquet bands.

In summary, we have revealed the generation of effective
magnetic fields for photons in photonic crystals under
continuous spatiotemporal modulations. In this paradigm,
we showed a photonic analogue of an anomalous quantum
Hall effect with unique topological band features due to
delocalized wave interference. Other than that, a variety of
combinations of spatiotemporal modulations and static
photonic crystals can be explored to implement physics
that otherwise seems difficult with discretely modulated
resonator lattices, including those models requiring a
nonreciprocal phase on beyond-nearest-neighbor cou-
plings. For instance, the scenario when the modulations
have a different periodicity than that of the static photonic
crystals [e.g., when k; — Kk ; in Eq. (6) are not the primitive
reciprocal lattice vectors] might be used to generate fractal
photonic spectra, such as the Hofstadter butterfly [28].
Beam steering using effective gauge fields [6,29] becomes
feasible in the continuum case because it avoids the mode
matching issue between single-mode beams and arrays of
resonators that discretely sample the beam. One could also
use the modulated continuum to realize “light stopping”
[30]. To that end, modulations with q = 0 should be used in
order to preserve the wave vector components of the signal
pulse; then, by adiabatically tuning the modulation ampli-
tude, the topography of the coupled Floquet bands alters
(e.g., shift of band edges), causing substantial change of the
group velocity of light for coherent information storage.

We are very grateful to Yu Shi and Shanhui Fan for
providing the FDTD simulation code. This work is sup-
ported in part by U.S. National Science Foundation under
Grant No. ECCS-1809707.
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