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The studies of topological phases of matter have been developed from condensed matter physics to
photonic systems, resulting in fascinating designs of robust photonic devices. Recently, higher-order
topological insulators have been investigated as a novel topological phase of matter beyond the
conventional bulk-boundary correspondence. Previous studies of higher-order topological insulators have
been mainly focused on the topological multipole systems with negative coupling between lattice sites.
Here we experimentally demonstrate that second-order topological insulating phases without negative
coupling can be realized in two-dimensional dielectric photonic crystals. We visualize both one-
dimensional topological edge states and zero-dimensional topological corner states by using the near-
field scanning technique. Our findings open new research frontiers for photonic topological phases and
provide a new mechanism for light manipulating in a hierarchical way.
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Introduction.—One of the most intriguing developments
of condensed matter physics over the past few decades has
been the discovery of topological phases in electronic
systems [1,2], which has been recently developed in pho-
tonics [3–14] and phononics [15–20]. A key feature of the
topological insulators is the backscattering-immune edge
states, which are robust against perturbations and provide
potential designs of various topological devices [3–6,17,19].
According to the bulk-boundary correspondence, n-dimen-
sional ðnDÞ topological insulators (TIs) have ðn − 1ÞD edge
states [21]. However, a new kind of TIs defined as higher-
order topological insulators (HOTIs) have been recently
proposed in tight-binding models in electronic systems
which go beyond the traditional bulk-boundary correspon-
dence [22–36]. The mth-order TIs have nD gapped bulk
states and ðn − 1ÞD; ðn − 2ÞD;…; ðn −m − 1ÞD gapped
edge states while having ðn −mÞD gapless edge states.
The arising of these lower-dimensional topological edge
states can either stem from the quantization of quadrupole
moments such as the topological quadrupole insulators [22],
which have been realized in mechanics [23], microwave
systems [24], and topolectrical circuits [25], or stem from the
quantization of the dipolemoments [22] such as theHOTIs in
a 2Dbreathing kagome lattice [29], which have been realized
in sonic crystals [33–35] and a waveguide array [32].
Photonic crystals (PCs) offer irreplaceable opportunities

to investigate theoretical physics in a highly controllable

way [37,38]. Moreover, they have a wide range of applica-
tions in manipulating the propagation of electromagnetic
(EM) waves and designing novel photonic devices from
microwaves to optical waves. Previously, topological insu-
lating phases in dielectric PCs have been experimentally
demonstrated with traditional bulk-boundary correspon-
dence (the first-order TIs) [39]. A recent theoretical study
shows that it is possible to realize HOTIs in 2D pure-
dielectric PCs [30]. However, the experimental realizations
of HOTIs in pure-dielectric PCs without negative coupling
are still challenging and waiting to be achieved.
In this Letter, we experimentally realize a second-order

topological insulator (SOTI) in a 2D dielectric PC which is
based on the 2D extension of the Su-Schrieffer-Heeger
(SSH) lattice [40–43]. Instead of introducing a negative
coupling, which is essential to the formation of topological
quadrupole insulators, we demonstrate that the quantization
of dipole moments in the C4 symmetric lattice can also lead
to second-order topological insulating phases. We engineer
a square metastructure formed by two pieces of PCs, where
the inner PC is in a topological nontrivial phase while the
outer PC is in a topological trivial phase. By applying the
near-field scanning technique, we visualize both the first-
order and the second-order topological insulating phases in
the same structure, which can be simply controlled by the
geometric parameters, implying a hierarchical structure in
topological insulating phases [36].
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Crystal structure and bulk band structure.—Our 2D PCs
possess a square lattice geometry with four artificial atoms
formed in a unit cell as depicted in Fig. 1(a). There are two
competing parameters in a PC: the intracell distance of
nearest atoms d1 and the intercell distance of nearest atoms
d2. d1 and d2 modulate the coupling strengths between
nearest lattice sites, and we notice that d1 þ d2 ¼ a, where
a is the lattice constant. For simplicity, we define
Δ ¼ ðd1 − d2Þ=4, which determines the lattice structure
of a PC if other parameters are fixed. In this Letter, we
consider PCs with a finite height in the z direction and set
the height of cylinders h ¼ 13.5 mm, lattice constant
a ¼ 20 mm, and radius of the cylinders r ¼ 2.4 mm as
shown in Fig. 1(c).
Next, we show the evolution of band gaps for transverse

magnetic modes by numerical simulation. In this Letter, we
consider perfect electric conductor (PEC) boundaries in the
upper and lower plates perpendicular to the z direction [see
Fig. 1(c)] and set the relative dielectric permittivity ϵ ¼ 6.1.
The above implementations ensure a valid 2D approxima-
tion. We start from a simple case whereΔ ¼ 0 [indicated by
gray circles in Fig. 1(b)], and the PC is a conventional 2D
square lattice PC (with one atom in the unit cell). In this
case, the first band and the second band are degenerate at

the X point as shown in Fig. 1(d) (middle panel). Next, we
consider two cases: Δ ¼ −0.11a, which corresponds to the
“shrunken” lattice [indicated by dashed blue circles in
Fig. 1(b)], and Δ ¼ 0.11a, which corresponds to the
“expanded” lattice [indicated by dashed red circles in
Fig. 1(b)]. In both cases, the previous gapless point is
opened and a full photonic band gap emerges. The band
structures for these three cases are presented in Fig. 1(d).
We notice that the shrunken lattice and expanded lattice are
in distinct topological phases which are connected by a
band-inversion process. To demonstrate it clearly, we
calculate the electric field distribution of the unit cell for
two cases as shown in Fig. 1(e). Because of the inversion
symmetry, the parities of the first band and the second band
can be defined as the eigenvalues of the inversion operator.
As shown in Figs. 1(d) and 1(e), the parities for the first and
the second bands have changed as we change Δ ¼ −0.11a
to Δ ¼ 0.11a, indicating the bands have been inverse.
Topological phase transition induced by deformation of

the lattice structure.—Here we investigate the relation
between the size of the gap and Δ. The result (phase
diagram) is given in Fig. 2(a). It is intriguing to notice that
there is a metallic phase other than two insulating phases
for Δ ≠ 0. Although the local gapless point at X is opened,
the gap in the first Brillouin zone does not appear when jΔj
is relatively small. The phase diagram is similar to the
theoretical tight-binding model (2D SSH model) [30,42],
indicating a topological equivalence between the band
structures of our PCs and those of the 2D SSH model
(see Sec. I in Ref. [44]). From the perspective of the tight-
binding approximation, when Δ is nonzero, a tetramerized
configuration of the nearest-neighbor coupling is formed,

FIG. 1. Crystal structures and bulk band structures. (a) The
lattice structure with d1 and d2 representing the intracell distance
and intercell distance, respectively, of the nearest atoms. (b) Dif-
ferent configurations of photonic crystals. The dashed blue (red)
circles represent the shrunken (expanded) configuration, and gray
circles represent the normal square lattice without tetrameriza-
tion. (c) Three-dimensional structure of a unit cell with the upper
plate removed. (d) Band structures for Δ ¼ −0.11a (left), Δ ¼ 0
(middle), and Δ ¼ 0.11a (right), which represent a shrunken,
normal, and expanded lattice, respectively. For shrunken and
expanded lattices, the band structures have the same dispersion
but different parities of the first and second bands at the X point
(denoted byþ and − symbols). (e) The electric field distributions
in a unit cell of the first band (lower panels) and the second band
(upper panels) at the X points in the first Brillouin zone which
show the parities.

FIG. 2. Phase diagram and topological edge states. (a) The OI
phase, metallic phase, and SOTI phase with different Δ. (b) The
projected band structure of two photonic crystals within different
topological phases. A band gap with a 1D edge state is presented.
(c),(d) The projected band structure of two photonic crystals
within the same trivial and nontrivial phases, respectively. There
is no edge state in the gap. (e) A simulated edge state with a
frequency at 6.00 GHz [represented by a red star in (b)].
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and the mass term in the effective Hamiltonian describing
the low-energy physics around the gapless point is nonzero.
We found two areas of fully gapped phases when Δ <
−0.087a and Δ > 0.087a, which are represented by blue
and red, respectively, in Fig. 2(a). These two areas have two
mass terms with different signs, respectively, and, hence,
are topological distinct to each other. Since the gap is
maintained in each individual area, the band structures can
be connected by adiabatic evolutions and, thus, belong to
the same topological class.
To characterize the topological properties of the 1D

edge states, we define a topological invariant based on the
2D polarization. The topological phases can be character-
ized by

Pi ¼ −
1

ð2πÞ2
Z
BZ

d2kTr½Âi�; i ¼ x; y; ð1Þ

where ðÂiÞmnðkÞ ¼ ihumðkÞj∂ki junðkÞi, with m and n
running over all bands below the gap. jumðkÞi is the
periodic part of the electric field for the mth band. The 2D
polarization is simply related to the 2D Zak phase via θi ¼
2πPi for i ¼ x, y. For Δ > 0.087a, P ¼ ðPx; PyÞ ¼ ð1

2
; 1
2
Þ,

which implies that the PC is in a topological nontrivial
insulating phase. Similarly, when Δ < −0.087a, P ¼
ðPx; PyÞ ¼ ð0; 0Þ, which implies that the PC is in a topo-
logical trivial phase. The above polarization forms a Z2

topological invariant of the system (see Sec. II in Ref. [44]).
To demonstrate the existence of edge states, we consider

a combined structure of PCs where a topologically non-
trivial PC is jointed by a topologically trivial PC. The
simulated projected band structure is shown in Fig. 2(b).
We use the PEC boundary condition for boundaries parallel
to the interface of two PCs, which ensures that there is no
extra edge state (see Sec. V in Ref. [44]), while using
Floquet periodic boundary condition for boundaries
perpendicular to the interface and set other parameters
the same as those in Fig. 1. As seen in Fig. 2(b), an interface
state (indicated by the solid blue line) appears in the middle
of the gap. For comparison, we provide the projected band
structures of two PCs in the same topological phases as
shown in Figs. 2(c) and 2(d) which have no edge states. The
simulated field distribution of the combined structure for
the nontrivial case is shown in Fig. 2(e). A 1D localized
state emerges and decays fast away from the interface
(indicated by the white dashed line).
Experimental observation of corner states in a

metastructure.—We now extend the discussion from the
previous combined structure to a square metastructure as
shown in Fig. 3(a). The metastructure is realized by placing
a topological nontrivial PC (denoted as SOTI) with 10 × 10
periods, surrounding by a four-layer trivial PC [denoted as
an ordinary insulator (OI)]. Δ for the SOTI and OI are
0.11a and −0.11a, respectively, with other geometric
parameters the same as those in Fig. 1. The SOTI and

OI are distinct in topology, and their band gaps overlap with
each other. Figure 3(b) shows the eigenmodes of the
metastructure at frequencies between 5.50 and 6.50 GHz.
The numerical calculation with the PEC boundary condition
for boundaries in the x and y directions indicates that four
near-degenerate midgap states (indicated by blue dots)
emerge at frequencies around 6.25 GHz between the 1D
edge states (indicated by yellow dots) and the bulk bands
(indicated by gray dots). The simulated electric field
(polarized in the z direction) distribution is shown in
Fig. 3(c), which clearly demonstrates that these four states
are strongly localized at four corners of the box-shape
boundary (indicated by the white dashed line) in the
metastructure. The phases of the corner states form both a
dipole and a quadrupole (see Sec. IV in Ref. [44]).
To experimentally observe corner states, we fabricate a

metastructure of PCs consisting of alumina cylinders with
relative dielectric permittivity ϵ ¼ 10. To prevent the trans-
verse magnetic modes from leaking into the air, we use two
flat metallic plates to cover the bottom and top of the PCs,
mimicking the PEC boundaries. We then place an excitation
source at the upper-right corner of the boundary of two PCs
as depicted in Fig. 3(d). By using near-field scanning
technology, we obtain quantitatively the distribution of
the out-of-plane electric field (polarized in the z direction)
along thewhole interface and visualize the result obtained at
6.26 GHz as depicted in Fig. 3(d). See details in Sec. VII
in Ref. [44].
Figure 3(d) shows a strong concentration of field dis-

tribution in four dielectric cylinders at the corners of

FIG. 3. Experimental visualization of corner states in a meta-
structure. (a) Photograph of a metastructure with the upper
metallic plate removed. The boundary of two photonic crystals
is denoted by the blue dashed line. The enlarged corner structure
is presented. (b) Eigenmodes calculation of the metastructure
with the same parameters in Fig. 1(d). Corner states, edge states,
and bulk states are represented by blue, yellow, and gray dots,
respectively. (c) A simulated electric field distribution of one of
the four corner states. (d) Experimental visualization of corner
states at 6.26 GHz. The scanning area is a rectangle instead of a
square. The excitation source is depicted by the green dot.
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metastructure, indicating the subwavelength character of
the corner states. An enhancement of fields from the source
is observed. The corner states arise due to the filling
anomaly in C4-symmetric topological crystalline insulators
[45]. Based on the C4 symmetry representations at a high
symmetry point, we can define a corner topological index:

Qc ¼ 1

4
ð½X1� þ 2½M1� þ 3½M2�Þ; ð2Þ

where ½Πp� ¼ #Πp − #Γp and #Πp is defined as the number
of bands below the band gap with rotation eigenvalues
Πp ¼ e½2πiðp−1Þ�=4 for p ¼ 1, 2, 3, 4. Π stand for high
symmetric points X, M, and Γ. For the nontrivial case, we
have ½X1� ¼ −1, ½M1� ¼ 1, and ½M2� ¼ 0. Therefore, the
corner topological index is Qc ¼ 1

4
, indicating 1

4
fraction-

alized corner states at each of the four corners (see Sec. II in
Ref. [44]). A small difference of frequencies between
simulations and experiments is induced by an air layer
above the PCs (see Sec. VI in Ref. [44]) and manufacturing
accuracy errors.
Hierarchical topological insulating phases in

photonics.—To further verify the coexistence of 1D topo-
logical edge states and 0D topological corner states, we
excite the eigenstates from 5.23 to 6.70 GHz. The same
procedure is applied as the previous section to observe the
out-of-plane electric field distribution. The result is shown
in Fig. 4. The local field intensity for bulk, edge, and corner
points (represented by a gray, yellow, and blue dot in the
inset, respectively) are obtained from the averaged value of
field distributions at each point, respectively, as depicted in
Fig. 4(a). We note that a nonzero intensity at a corner (edge)
point can stem from the existence of edge states (bulk
states). We find that there is a bulk-edge-corner-bulk
evolution as we continuously increase the excitation
frequencies. This measurement agrees with the result
shown in Fig. 3(b). A small difference in the frequencies
between the simulation and experiment is observed due to
the air layer above the metastructure in experiments. As
shown in Fig. 4(c), the field strength in the 2D bulk of the
metastructure is significantly suppressed, representing the
gapped 2D bulk states. Meanwhile, a strong field strength
at the 1D boundaries is obviously observed, which dem-
onstrates the gapless 1D edge states. These features match
with the traditional bulk-boundary correspondence and the
definition of the first-order topological insulators.
Similarly, in Fig. 4(d), the field strength at the 0D corners
is strong, and the field strength in the 1D boundaries as well
as 2D bulk of the structure (except from the source) are
significantly weak, which clearly demonstrates a SOTI
phase as its definition. Because of the linear dispersion of
the first band near the Γ point in dielectric PCs, the chiral
symmetry is broken, and the band structure is beyond the
scope of the tight-binding model with nearest-neighbor
couplings. Therefore, the frequency levels of the edge states
and corner states are deviated from the “zero energy” level

and can be separated from the bulk bands (that appear in the
band gap). These topological states are robust against
disorders which do not break the C4 symmetry.
Conclusion and discussion.—In summary, we here

experimentally demonstrate a 2D SOTI in dielectric PCs
and visualize both 1D topological edge states and 0D
subwavelength corner states. Our realization is based on
pure-dielectric PCs, which have no undesirable Ohmic-loss
effect compared to those with metallic and plasmonic
materials and play an important role in realizing photonic
integrated circuits and resonator antennas with high radi-
ation efficiency [39,52]. The hierarchical structure of
topological insulating phases is observed in a topological
nontrivial configuration [53]. These structure-controlled
topological phases may pave the way for the realization
of 3D photonic HOTIs and higher-order topological

FIG. 4. Hierarchical structure of topological insulating phases.
(a) Normalized local field intensity measured at bulk, edge, and
corner points as depicted in the inset. The bulk, edge, and corner
eigenstates from the numerical calculation are represented by
gray, yellow, and blue dots, respectively. We provide the
visualization of (b) a bulk state at 5.32 GHz, (c) an edge state
at 6.00 GHz, (d) a corner state at 6.26 GHz, and (e) a bulk state at
6.52 GHz with the excitation source placed at the upper-right
corner of the boundary (represented by the white dashed line).
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semimetals [54]. Moreover, the coexistence of different
dimensional topological boundary states can serve as a
basis for designing topological switch circuits between
crystalline insulators and higher-order topological insula-
tors [55]. Our implementation can be minimized, and the
working frequency can be improved up to optical frequency
by using microfabrication [56]. Finally, our findings may
support explorations in designing a topological point
source with lasering by introducing gain and loss in
materials [57,58], topological light trappings [59], and
photonic chips with multiphoton quantum states [60–62].

This work was financially supported by National Key
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Note added.—Independent of this work, other photonic
realisations of corner states were simultaneously reported
in two-dimensional photonic slabs [63], nanocavity [64],
coupled waveguides [65], and with quadrupole phases [66].

*zhanpeng@nju.edu.cn
†luminghui@nju.edu.cn
‡B.-Y. X., G.-X. S., and H.-F. W. contributed equally to this
work.

[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[2] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[3] F. D. M. Haldane and S. Raghu, Phys. Rev. Lett. 100,

013904 (2008).
[4] Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacic,

Nature (London) 461, 772 (2009).
[5] M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor,

Nat. Phys. 7, 907 (2011).
[6] Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, Phys.

Rev. Lett. 106, 093903 (2011).
[7] M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor,

Nat. Photonics 7, 1001 (2013).
[8] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D.

Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit,
Nature (London) 496, 196 (2013).

[9] A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian,
A. H. MacDonald, and G. Shvets, Nat. Mater. 12, 233
(2013).

[10] L. Lu, J. D. Joannopoulos, and M. Soljacic, Nat. Photonics
8, 821 (2014).

[11] W. J. Chen, S. J. Jiang, X. D. Chen, B. Zhu, L. Zhou, J. W.
Dong, and C. T. Chan, Nat. Commun. 5, 5782 (2014).

[12] B. Y. Xie, H. F. Wang, X. Y. Zhu, M. H. Lu, Z. D. Wang, and
Y. F. Chen, Opt. Express 26, 24531 (2018).

[13] L.-H. Wu and X. Hu, Phys. Rev. Lett. 114, 223901 (2015).
[14] L. Xu, H.-X. Wang, Y.-D. Xu, H.-Y. Chen, and J.-H. Jiang,

Opt. Express 24, 18059 (2016).

[15] Z. G. Chen, X. Ni, Y. Wu, C. He, X. C. Sun, L. Y. Zheng,
M. H. Lu, and Y. F. Chen, Sci. Rep. 4, 4613 (2014).

[16] Z. J. Yang, F. Gao, X. H. Shi, X. Lin, Z. Gao, Y. D. Chong,
and B. L. Zhang, Phys. Rev. Lett. 114, 114301 (2015).

[17] X. Ni, C. He, X. C. Sun, X. P. Liu, M. H. Lu, L. Feng, and
Y. F. Chen, New J. Phys. 17, 053016 (2015).

[18] M. Xiao, G. Ma, Z. Yang, P. Sheng, Z. Q. Zhang, and C. T.
Chan, Nat. Phys. 11, 240 (2015).

[19] C. He, X. Ni, H. Ge, X. C. Sun, Y.-B. Chen, M.-H. Lu, X.-P.
Liu, and Y.-F. Chen, Nat. Phys. 12, 1124 (2016).

[20] A. B. Khanikaev, R. Fleury, S. H. Mousavi, and A. Alu, Nat.
Commun. 6, 8260 (2015).

[21] T. L. Hughes, R. G. Leigh, and O. Parrikar, Phys. Rev. D 88,
025040 (2013).

[22] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes,
Science 357, 61 (2017).

[23] M. Serra-Garcia, V. Peri, R. Süsstrunk, O. R. Bilal, T.
Larsen, L. G. Villanueva, and S. D. Huber, Nature (London)
555, 342 (2018).

[24] C. W. Peterson, W. A. Benalcazar, T. L. Hughes, and G. A.
Bahl, Nature (London) 555, 346 (2018).

[25] S. Imhof, C. Berger, F. Bayer, J. Brehm, L.W. Molenkamp,
T. Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert,
and R. Thomale, Nat. Phys. 14, 925 (2018).

[26] F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S.
Parkin, B. A. Bernevig, and T. Neupert, Sci. Adv. 4,
eaat0346 (2018).

[27] J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and
P.W. Brouwer, Phys. Rev. Lett. 119, 246401 (2017).

[28] Z. Song, Z. Fang, and C. Fang, Phys. Rev. Lett. 119, 246402
(2017).

[29] M. Ezawa, Phys. Rev. Lett. 120, 026801 (2018).
[30] B. Y. Xie, H. F. Wang, H.-X. Wang, X. Y. Zhu, J.-H. Jiang,

M. H. Lu, and Y. F. Chen, Phys. Rev. B 98, 205147 (2018).
[31] J. Noh, W. A. Benalcazar, S. Huang, M. J. Collins, K. Chen,

T. L. Hughes, and M. C. Rechestman, Nat. Photonics 12,
408 (2018).

[32] M. Geier, L. Trifunovic, M. Hoskam, and P. W. Brouwer,
Phys. Rev. B 97, 205135 (2018).

[33] X. Zhang, H. X. Wang, Z. K. Lin, Y. Tian, B. Xie, M. H. Lu,
Y. F. Chen, and J. H. Jiang, arXiv:1806.10028 [Nat. Phys.
(to be published)].

[34] X. Ni, M. Weiner, A. Alù, and A. B. Khanikaev, arXiv:
1807.00896.

[35] H. Xue, Y. Yang, F. Gao, Y. Chong, and B. Zhang, Nat.
Mater. 18, 108 (2019).

[36] X. Zhang, Z. K. Lin, H. X. Wang, Y. Tian, M. H. Lu, Y. F.
Chen, and J. H. Jiang, arXiv:1811.05514.

[37] J. D. Joannopoulos, S. G. Johnson, and J. N. Winn, and
R. D. Meade, Photonic Crystals: Molding the Flow of
Light - Second Edition (Princeton University, Princeton,
NJ, 2011).

[38] T. Baba, Nat. Photonics 2, 465 (2008).
[39] A. Slobozhanyuk, S. H. Mousavi, X. Ni, D. Smirnova, Y. S.

Kivshar, and A. B. Khanikaev, Nat. Photonics 11, 130
(2017).

[40] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett.
42, 1698 (1979).

[41] F. Liu and K. Wakabayashi, Phys. Rev. Lett. 118, 076803
(2017).

PHYSICAL REVIEW LETTERS 122, 233903 (2019)

233903-5

https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/PhysRevLett.100.013904
https://doi.org/10.1103/PhysRevLett.100.013904
https://doi.org/10.1038/nature08293
https://doi.org/10.1038/nphys2063
https://doi.org/10.1103/PhysRevLett.106.093903
https://doi.org/10.1103/PhysRevLett.106.093903
https://doi.org/10.1038/nphoton.2013.274
https://doi.org/10.1038/nature12066
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/ncomms6782
https://doi.org/10.1364/OE.26.024531
https://doi.org/10.1103/PhysRevLett.114.223901
https://doi.org/10.1364/OE.24.018059
https://doi.org/10.1038/srep04613
https://doi.org/10.1103/PhysRevLett.114.114301
https://doi.org/10.1088/1367-2630/17/5/053016
https://doi.org/10.1038/nphys3228
https://doi.org/10.1038/nphys3867
https://doi.org/10.1038/ncomms9260
https://doi.org/10.1038/ncomms9260
https://doi.org/10.1103/PhysRevD.88.025040
https://doi.org/10.1103/PhysRevD.88.025040
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1038/nature25156
https://doi.org/10.1038/nature25156
https://doi.org/10.1038/nature25777
https://doi.org/10.1038/s41567-018-0246-1
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevLett.120.026801
https://doi.org/10.1103/PhysRevB.98.205147
https://doi.org/10.1038/s41566-018-0179-3
https://doi.org/10.1038/s41566-018-0179-3
https://doi.org/10.1103/PhysRevB.97.205135
http://arXiv.org/abs/1806.10028
http://arXiv.org/abs/1807.00896
http://arXiv.org/abs/1807.00896
https://doi.org/10.1038/s41563-018-0251-x
https://doi.org/10.1038/s41563-018-0251-x
http://arXiv.org/abs/1811.05514
https://doi.org/10.1038/nphoton.2008.146
https://doi.org/10.1038/nphoton.2016.253
https://doi.org/10.1038/nphoton.2016.253
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.118.076803
https://doi.org/10.1103/PhysRevLett.118.076803


[42] F. Liu, H. Y. Deng, and K. Wakabayashi, Phys. Rev. B 97,
035442 (2018).

[43] C. Poli, M. Bellec, U. Kuhl, F. Mortessagne, and H.
Schomerus, Nat. Commun. 6, 6710 (2015).

[44] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.122.233903 for discus-
sions about the topological equivalence to the tight-binding
model, topological theory for corner states, symmetry
constraints on boundary states, phases of the corner states,
boundary condition for simulation, the influence of an air
layer on the band structure, and the experimental measure-
ment, which includes Refs. [22,30,41,45–51].

[45] W. A. Benalcazar, T. Li, and T. L. Hughes, arXiv:
1809.02142.

[46] F. Liu, H. Y. Deng, and K. Wakabayashi, Phys. Rev. Lett.
122, 086804 (2019).

[47] B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang,
C. Felser, M. I. Aroyo, and B. A. Bernevig, Nature (London)
547, 298 (2017).

[48] X. Ni, M. Weiner, A. Alù, and A. B. Khanikaev, Nat. Mater.
18, 113 (2019).

[49] H. Xue, Y. Yang, F. Gao, Y. Chong, and B. Zhang, Nat.
Mater. 18, 108 (2019).

[50] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Phys.
Rev. B 96, 245115 (2017).

[51] D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis,
Phys. Rev. E 71, 036617 (2005).

[52] W. Withayachumnankul, R. Yamada, C. Fumeaux, M.
Fujita, and T. Nagatsuma, Opt. Express 25, 14706 (2017).

[53] M. Weiner, X. Ni, M. Li, A. Alù, and A. B. Khanikaev,
arXiv:1903.00428.

[54] M. Lin and T. L. Hughes, Phys. Rev. B 98, 241103
(2018).

[55] M. Ezawa, Phys. Rev. Lett. 121, 116801 (2018).
[56] M. Campbell, D. N. Sharp, M. T. Harrison, R. G.

Denning, and A. J. Turberfield, Nature (London) 404,
53 (2000).

[57] G. Harari, M. A. Bandres, Y. Lumer, M. C. Rechtsman,
Y. D. Chong, M. Khajavikhan, D. N. Christodoulides, and
M. Segev, Science 359, eaar4003 (2018).

[58] M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M.
Segev, D. N. Christodoulides, and M. Khajavikhan, Science
359, eaar4005 (2018).

[59] F. F. Li, H. X. Wang, Z. Xiong, Q. Lou, P. Chen, R. X. Wu,
Y. Poo, J. H. Jiang, and S. John, Nat. Commun. 9, 2462
(2018).

[60] A. Blanco-Redondo, B. Bell, D. Oren, B. J. Eggleton, and
M. Segev, Science 362, 568 (2018).

[61] Y. Wang, X. L. Pang, Y. H. Lu, J. Gao, Z. Q. Jiao, H. Tang,
and X. M. Jin, arXiv:1810.01435.

[62] J. L. Tambasco, G. Corrielli, R. J. Chapman, A. Crespi, O.
Zilberberg, R. Osellame, and A. Peruzzo, Sci. Adv. 4,
eaat3187 (2018).

[63] X.-D. Chen, W.-M. Deng, F.-L. Shi, F.-L. Zhao, M. Chen,
and J.-W. Dong, preceding Letter, Phys. Rev. Lett. 122,
233902 (2019).

[64] Y. Ota, F. Liu, R. Katsumi, K. Watanabe, K. Wakabayashi,
Y. Arakawa, and S. Iwamoto, arXiv:1812.10171.

[65] A. E. Hassan, F. K. Kunst, A. Moritz, G. Andler, E. J.
Bergholtz, and M. Bourennane, arXiv:1812.08185.

[66] S. Mittal, V. V. Orre, G. Zhu, M. A. Gorlach, A. Poddubny,
and M. Hafezi, arXiv:1812.09304.

PHYSICAL REVIEW LETTERS 122, 233903 (2019)

233903-6

https://doi.org/10.1103/PhysRevB.97.035442
https://doi.org/10.1103/PhysRevB.97.035442
https://doi.org/10.1038/ncomms7710
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.233903
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.233903
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.233903
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.233903
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.233903
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.233903
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.233903
http://arXiv.org/abs/1809.02142
http://arXiv.org/abs/1809.02142
https://doi.org/10.1103/PhysRevLett.122.086804
https://doi.org/10.1103/PhysRevLett.122.086804
https://doi.org/10.1038/nature23268
https://doi.org/10.1038/nature23268
https://doi.org/10.1038/s41563-018-0252-9
https://doi.org/10.1038/s41563-018-0252-9
https://doi.org/10.1038/s41563-018-0251-x
https://doi.org/10.1038/s41563-018-0251-x
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevE.71.036617
https://doi.org/10.1364/OE.25.014706
http://arXiv.org/abs/1903.00428
https://doi.org/10.1103/PhysRevB.98.241103
https://doi.org/10.1103/PhysRevB.98.241103
https://doi.org/10.1103/PhysRevLett.121.116801
https://doi.org/10.1038/35003523
https://doi.org/10.1038/35003523
https://doi.org/10.1126/science.aar4003
https://doi.org/10.1126/science.aar4005
https://doi.org/10.1126/science.aar4005
https://doi.org/10.1038/s41467-018-04861-x
https://doi.org/10.1038/s41467-018-04861-x
https://doi.org/10.1126/science.aau4296
http://arXiv.org/abs/1810.01435
https://doi.org/10.1126/sciadv.aat3187
https://doi.org/10.1126/sciadv.aat3187
https://doi.org/10.1103/PhysRevLett.122.233902
https://doi.org/10.1103/PhysRevLett.122.233902
http://arXiv.org/abs/1812.10171
http://arXiv.org/abs/1812.08185
http://arXiv.org/abs/1812.09304

