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Until recently, uncertainty quantification in low energy nuclear theory was typically performed using
frequentist approaches. However in the last few years, the field has shifted toward Bayesian statistics for
evaluating confidence intervals. Although there are statistical arguments to prefer the Bayesian approach,
no direct comparison is available. In this work, we compare, directly and systematically, the frequentist and
Bayesian approaches to quantifying uncertainties in direct nuclear reactions. Starting from identical initial
assumptions, we determine confidence intervals associated with the elastic and the transfer process for both
methods, which are evaluated against data via a comparison of the empirical coverage probabilities.
Expectedly, the frequentist approach is not as flexible as the Bayesian approach in exploring parameter
space and often ends up in a different minimum. We also show that the two methods produce significantly
different correlations. In the end, the frequentist approach produces significantly narrower uncertainties on
the considered observables than the Bayesian. Our study demonstrates that the uncertainties on the reaction
observables considered here within the Bayesian approach represent reality more accurately than the much
narrower uncertainties obtained using the standard frequentist approach.
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Introduction.—Over the past few years, Bayesian meth-
ods have rapidly drawn much attention in the field of low
energy nuclear physics. They have opened new doors for
theoretical predictions: providing a means to rigorously
quantify uncertainties and the potential to help plan for
future experiments at rare isotope facilities worldwide.
Bayes statistics has been used in studies of the nuclear force
[1,2], of nuclear stability [3], and in nuclear astrophysics
simulations (e.g., Refs. [4,5]). Our group has also been
exploring Bayesian methods in the context of nuclear
reactions [6], particularly in connection to assessing the
uncertainties in the predicted cross section coming from the
optical potentials. While the explosion of applications of
Bayesian statistics to low energy nuclear theory is very
exciting, it also calls for special scrutiny.
Up to a decade ago, there were very few studies done on

uncertainty quantification in low energy nuclear theory, and
those efforts relied primarily on χ2-minimization tech-
niques stepping through parameter space in the maximal
direction of the local gradient. Relevant to our subfield, the
major global optical potentials being used currently in
reaction calculations [7–9] have been optimized in this way,
which from now on we shall refer to as the frequentist
approach. One important conclusion from this approach
was the presence of strong correlations between
some parameters of the optical potential, as discussed in
Refs. [10,11].

In contrast, the Bayesian framework often relies on
Markov chain Monte Carlo (MCMC) methods to sample
parameter space and obtain posterior predictions from the
product of the likelihood function and prior distribution,
without any normality assumption on the distribution of
parameters. Thus, one should not assume that the minimum
obtained from the frequentist approach matches the results
obtained in the Bayes MCMC method, and, moreover, that
the uncertainties estimated by bothmethods are consistent. It
is also possible that the insight obtained in the Bayesian
analysis does not match the knowledge that we have
established over the years using the frequentist methods [12].
For all these reasons, it is important and timely to directly

compare the two approaches. Despite the many recent
applications mentioned above, to our knowledge, there
exists no systematic and controlled comparison between
these two methodologies in our field. This is the goal of the
present study.
Methods and numerical details.—In this study, we focus

on deuteron induced reactions on heavy ions, within a
three-body model [13]. The inputs to the cross sections
calculated are nucleon-nucleus optical potentials Uopt. To
capture the complex many-body effects of nucleon-nucleus
scattering, the potential contains both a real part and an
imaginary part to account for flux that leaves the elastic
channel. Typically, optical potentials contain (i) a real
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Woods-Saxon volume term with parameters V, r, a for the
depth, radius, and diffuseness, (ii) an imaginary Woods-
Saxon volume term with parameters W, rw, aw, (iii) a
surface (derivative of a Woods-Saxon) imaginary term with
parameters Ws, rs, and as, (iv) a spin-orbit term, and (v) a
Coulomb term for charged projectiles [13]. In this work, we
fitted the real volume, imaginary volume, and imaginary
surface parameters and kept the spin-orbit and Coulomb
terms fixed. We then used elastic scattering angular dis-
tribution data to constrain these free parameters.
We first consider neutron and proton scattering on 48Ca,

90Zr, and 208Pb. Table I (columns 1–3) contains a summary
of all the data used to constrain the necessary optical
potentials. We chose only data sets with a wide angular
distribution and small error bars, and assign a 10%
uncertainty on all data to account for experimental error
and model inadequacy; this also prevents overfitting.
Because we eventually propagate the uncertainties to the
transfer (d, p) channel, the energies for the neutron and
proton elastic scattering are carefully chosen to be close to
either half the deuteron beam energy or the energy of the
proton in the exit channel. Starting from the original
Becchetti and Greenlees (BG) global parameterization
for the optical potential [7], we use both, the frequentist
and Bayesian method, to obtain posterior distributions for
the parameters and 95% confidence intervals for elastic
scattering data. In the case of 90Zr, the resulting geometry
parameters (radius and diffuseness) for proton and neutron
optical potentials resulting from the frequentist approach
were significantly different from each other, when starting
from the BG parameterization. Since this is physically
implausible, we use the parameters from the fitting of
90Zrðn; nÞ to initialize the 90Zrðp; pÞ reaction, only.
The frequentist approach follows the methods described

in detail in Refs. [10,11], considering only the uncorrelated
χ2 function. To initialize the fitting procedure, the original
BG parameters were used and allowed to vary within a

wide window (physical limits for each parameter). Then
1600 parameter sets were pulled from the multivariate
normal distribution induced by the χ2 around the optimal
parameters [10][Eq. (6)]; 95% confidence intervals were
constructed by removing the highest and lowest 2.5% of the
predicted values for the cross sections at each calcu-
lated angle.
We use the Bayesian MCMC implementation [6], with

the same numerical details. We choose wide Gaussian
priors, centered at the original BG value, with a standard
deviation equal to the mean value of the distribution. This
choice has proven to ensure that the parameter space is
appropriately sampled [6]. Again a total of 1600 parameter
sets were collected. In contrast to the frequentist method,
95% confidence intervals are constructed by taking the
densest 95% of the 1600 cross section values calculated at
each angle. The wrapper codes developed for both the
frequentist and the Bayesian analyses make use of the
reaction codes FRESCO and SFRESCO [23].
Results.—We illustrate our results in detail for reactions

on the 48Ca target. We start by analyzing nucleon elastic
scattering on 48Ca in Fig. 1. In the first row, we present
95% confidence intervals for neutron and proton elastic-
scattering angular distributions as a function of scattering
angle. For both methods, the uncertainty intervals appear to
provide a good description of the data. However, the
Bayesian approach results in wider confidence intervals
than the frequentist. This is clear in Figs. 1(a), 1(d), 1(e),
and 1(f), where the percentage width of each uncertainty
band is computed as a function of scattering angle. Here, ϵ
was obtained by taking the width of the confidence interval
at a given angle in the distribution and dividing by the
best fit (average) cross section value in the frequentist
(Bayesian) approach.
The reliability of the confidence intervals obtained from

the two statistical methods can be assessed by the empirical
coverage of the confidence intervals. We show in Figs. 1(g),
1(h), and 1(i) the empirical coverage probability curves of
each model, namely, the percentage of the experimental
data which actually falls within the predicted confidence
intervals with nominal value spanning ½0; 100%�. Because
this corresponds to training data, one might expect that
reality matches predictions; this ideal situation corresponds
to the black diagonal line in Figs. 1(h), 1(i), 1(j). Points
below this line correspond to underestimation of the
confidence intervals, whereas points above the diagonal
correspond to confidence intervals that are too large (a
lesser harm). For each of the three reactions shown in
Fig. 1, the Bayesian model provides an accurate quantifi-
cation of its uncertainty for the larger confidence intervals.
In contrast, the frequentist approach undershoots when
large confidence intervals are considered. This indicates
that the 95% confidence intervals obtained with the
frequentist approach are unrealistically narrow.

TABLE I. List of reactions studied: beam energy (col. 2), data
reference (col. 3), percentage of the data that falls into the
95% confidence interval obtained in the frequentist approach
(col. 4), and the Bayesian approach (col. 5).

Percentage of data

Reaction Energy (MeV) Ref. Frequentist Bayesian
48Caðp; pÞ 14.03 [14] 70 100
48Caðn; nÞ 12 [15] 61 100
48Caðp; pÞ 25 [16] 51 94
90Zrðp; pÞ 12.7 [17] 66 100
90Zrðn; nÞ 10 [18] 92 100
90Zrðp; pÞ 22.5 [19] 67 92
208Pbðp; pÞ 16 [20] 62 92
208Pbðn; nÞ 16.9 [21] 62 76
208Pbðp; pÞ 35 [22] 44 88
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We now inspect the posterior distributions for the
parameters and the correlations between parameters. In
Fig. 2, we show, along the diagonal, the posterior distri-
butions predicted by both approaches (blue for the fre-
quentist and orange for the Bayesian): 48Caðn; nÞ at
12 MeV in Fig. 2(a); 48Caðp; pÞ at 14 MeV in Fig. 2(b);
and 48Caðp; pÞ at 25 MeV in Fig. 2(c). Note that these
correlation plots require larger statistics: for Fig. 2 we
needed to collect 100000 parameter sets. The peaks of the
posterior distributions obtained for the parameters associ-
ated with the real part of the optical potential are nearly
identical in both approaches, however the Bayesian pro-
cedure produces densities with large and sometimes asym-
metric tails which thus differ significantly from Gaussian
distributions. The differences in the peak of the posteriors
for the parameters associated with the imaginary compo-
nents are more noticeable. Note that some of these
imaginary parameters could not be included in the fit for
the frequentist approach, as the minimization procedure
drove the parameters into unphysical values. For those
cases, the parameters in the frequentist model were fixed at

some intermediate physically plausible values, and only the
Bayesian posteriors are shown.
Figure 2 also contains the scatter plots associated with

each pair of parameters. Elongated elliptical forms dem-
onstrate high correlations between parameter pairs,
while circular scatter plots indicate low correlations. It
is clear from Fig. 2 that the frequentist approach finds
strong correlations between parameters. This was also
the conclusion in Ref. [10] and has been well established in
the field of nuclear reactions [13]. However, the
Bayesian approach provides a very different picture: we
find systematically that only the depth and radius of
the real part are strongly correlated, in all cases here
considered. All other scatter plots have approximately
circular shape indicating that the parameters are weakly
correlated.
The reduction of the number of fitted parameters in the

frequentist approach could be responsible for the additional
correlations seen in the scatter plots in the frequentist
approach. To test this hypothesis, we have rerun the
Bayesian procedure, fixing the same parameters as in the

FIG. 1. Elastic scattering for neutrons and protons on 48Ca. Top row [panels (a),(b),(c)]: the predicted 95% confidence intervals from
Bayesian (orange vertical hash) is compared with the frequentist approach (blue slanted hash), and to experimental data. Middle row
[panels (d),(e),(f)]: percent uncertainty of the confidence intervals. Bottom row [panels (g),(h),(i)]: comparison of the percentage of data
falling within the given confidence interval. First column, 48Caðn; nÞ at 12 MeV; second column, 48Caðp; pÞ at 14 MeV; third column,
48Caðp; pÞ at 25 MeV.
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frequentist approach. The results lead to the same overall
conclusion. Given that the posterior distributions for the
Bayesian deviate strongly from Gaussian, one can thus
expect that the bivariate distributions of the Bayesian model
(corresponding to the scatter plots in Fig. 2) would also

deviate. Our hypothesis is thus that this is causing a bias in
the frequentist approach, which leads to erroneous con-
clusions, both in the magnitude of the uncertainties and in
the correlations between parameters.
Finally, we now look at the results when propagated

through a three-body reactions model to determine the
one-nucleon transfer (d, p) cross sections as done in
Refs. [6,11]. The adiabatic wave approximation (ADWA)
[24] was the reaction model used to describe the transfer
reaction. Apart from the optical potentials, all other inputs
used in the calculations were the same as those used in
Ref. [6]. Using the parameter posteriors for each of the
relevantnucleon-targetopticalpotentials,weobtain95%con-
fidence intervals for the transfer reaction (our wrapper codes
call the reaction codeNLAT [25] for this purpose).We show, in

FIG. 2. Posterior distributions for the parameters (diagonal) and
scatter plots for the correlations between parameters: Bayesian
are shown in shades of orange and frequentist in shades of blue:
48Caðn; nÞ at 12 MeV (a); 48Caðp; pÞ at 14 MeV (b); and
48Caðp; pÞ at 25 MeV (c). Depths (V, Ws, W) are in MeV and
radii (r, rs, rw) and diffuseness (a, as, aw) are in fm.

FIG. 3. Transfer cross sections for 48Caðd; pÞ: the predicted
95% confidence intervals from the Bayesian (orange vertical
hash) and the frequentist approach (blue slashed hash) [panel (a)];
percent uncertainty of the confidence intervals [panel (b)];
comparison of the percentage of data falling within the given
confidence interval [panel (c)].
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Fig. 3(a), the 95% confidence intervals for the angular
distributions of 48Caðd; pÞ49Caðg:s:Þ at 19.3 MeV. Again
the blue-slanted-hashed area corresponds to the results using
the frequentist approach and the orange-vertical-hashed area
corresponds to those using the Bayesian approach. The
transfer cross sections have been normalized to the data
taken from Ref. [26] at the peak of the angular distribution.
Figure 3(b) shows that the percent uncertainty of the
confidence intervals in the Bayesian approach is larger than
the frequentist across all angles. Finally, we also show the
percentage of this test data that falls within the given
confidence interval in Fig. 3(c). As previously with the
training data, the Bayesian approach is more reliable,
particularly when considering higher levels of confidence.
In order to be able to draw general conclusions we expand

our study to include reactions on 90Zr and 208Pb, as listed in
Table I.We include in columns4 and 5, the percentage of data
that actually falls in the 95% confidence interval predicted by
the frequentist approach and the Bayesian approach, respec-
tively. For all but one of the cases considered, the frequentist
approach does not provide a reliable estimate for the
confidence interval. Indeed, the confidence intervals pre-
dicted by the frequentist approach are too narrow and the
fraction of the data that actually falls in them is much smaller
than the nominal 95%. On the contrary, the Bayesian
approach tends to be more conservative for the nucleon
elastic scattering on 48Ca and 90Zr at the lower energies and
makes predictions that are very close to the correct values for
most of the other cases.
Conclusions.—In this work we compare directly two

methods to evaluate uncertainties in reaction theory,
namely, the standard frequentist approach and the
Bayesian framework. We perform a systematic study of
nucleon scattering on three different target nuclei and use
elastic scattering data to constrain the optical potential
parameters. Our study is also controlled in that we make the
same assumptions in both the frequentist and the Bayesian
approaches. We conclude that the 95% confidence intervals
generated by the frequentist approach are unrealistically
narrow, as opposed to the Bayesian approach that provide a
correct assessment of the uncertainty. In addition, the
frequentist approach generates strong correlations between
parameters that are not seen in the Bayesian approach. We
attribute these differences to a strong deviation from the
χ2-based Gaussian distribution. When propagating these
uncertainty to (d, p) reactions, we arrive at the same
conclusions deduced from the elastic scattering analysis.
There is, a priori, no reason for the stark differences

found between these two uncertainty quantification
approaches to be specific to reaction theory, therefore it
is desirable that other subfields (e.g., atomic and molecular
physics), perform similar studies.
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