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A famous example of gauge-gravity duality is the result that the entropy density of the strongly coupled
N ¼ 4 supersymmetric Yang-Mills theory in four dimensions for large N is exactly 3=4 of the Stefan-
Boltzmann limit. In this work, I revisit the massless OðNÞmodel in 2þ 1 dimensions, which is analytically
solvable at a finite-temperature T for all couplings λ in the large N limit. I find that the entropy density
monotonically decreases from the Stefan-Boltzmann limit at λ ¼ 0 to exactly 4=5 of the Stefan-Boltzmann
limit at λ ¼ ∞. Calculating the retarded energy-momentum tensor correlator in the scalar channel at

λ ¼ ∞, I find that it has two logarithmic branch cuts originating at ω ¼ �4T lnð1þ ffiffiffi
5

p
=2Þ but no

singularities in the whole complex frequency plane. I show that the ratio 4=5 and the location of the branch
points both are universal within a large class of bosonic conformal field theories in 2þ 1 dimensions.
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Introduction.—How does matter at a finite-temperature
behave as the coupling is increased from very small to very
high values? For very small couplings, traditional descrip-
tions based on effective quasiparticles offer a very suc-
cessful tool to calculate finite-temperature matter properties
(such as the entropy density s). However, at very large
couplings, these descriptions break down, because there no
longer are well-defined quasiparticle degrees of freedom.
For certain theories, such as the N ¼ 4 supersymmetric
Yang-Mills theory (SYM) in four dimensions in the limit of
a large number of colors, the strong-coupling limit can be
accessed using the gauge-gravity duality conjecture [1].
Using calculations in accordance with this conjecture, it
was found that the entropy density for infinite coupling
λ → ∞ was equal to exactly 3=4 of the free-theory Stefan-
Boltzmann value [2]:

lim
λ→∞

s ¼ 3

4
sfree: ð1Þ

Perturbative corrections to the free theory result and the
infinite-coupling result have been calculated (cf. Ref. [2]),
but the full functional dependence of s=sfree on the coupling
λ for N ¼ 4 SYM in four dimensions is not known (cf. the
discussion in Ref. [3]).

For general quantum field theories, the ratio s=sfree
typically depends on both the coupling as well as the
temperature T. However, for conformal field theories
(CFTs) in Dþ 1 space-time dimensions, the entropy
density is simply proportional to the temperature
s ∝ TD, because the trace of the energy-momentum tensor
vanishes. Hence, one may ask if there are examples of
CFTs where one can evaluate the function s=sfree for all
values of the interaction strength.
In the present work, I present the case of one such CFT

where the ratio s=sfree can be calculated analytically for all
couplings. The model is the well-known OðNÞmodel in the
limit of N → ∞ given by the Euclidean Lagrangian

L ¼ 1

2
ð∂μϕ⃗Þ · ð∂μϕ⃗Þ þ

1

2
m2ϕ⃗2 þ λ

N
ðϕ⃗2Þ2; ð2Þ

in three Euclidean dimensions where ϕ⃗ ¼ ðϕ1;ϕ2;…ϕNÞ.
Here the Euclidean direction x0 has been compactified on a
circle of radius β ¼ ð1=TÞ, as is the standard procedure in
thermal quantum field theory [4]. Note that, in three
dimensions, the coupling λ has mass dimension one,
and, hence, only the combination λ=T is dimensionless
in this CFT. Thus, the high-temperature regime corresponds
to the weak-coupling limit, whereas the low-temperature
regime corresponds to the strong-coupling limit of the CFT.
The OðNÞ model in 2þ 1d has been conjectured to be

dual to higher spin gravity in AdS4 in the large N limit [5].
Having access to the exact solution of the 2þ 1d OðNÞ
model for large N, it is possible to evaluate finite-temper-
ature real-time correlation functions. The analytic structure,
and, in particular, the singularities of the retarded
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correlators, would then correspond to the quasinormal
modes of the dual black-brane geometry in AdS4, providing
further motivation for the present study.
It should be emphasized that several parts of the

calculation presented here were already discussed in the
literature more than 20 years ago, notably in Refs. [6–8].
Perhaps because these calculations predate the advent of
gauge-gravity correspondence, it seems that the available
parts have not been assembled into a discussion of the exact
finite-temperature properties of this CFT for all couplings,
which is the subject of the present work.
Calculation.—The partition function Z ¼ R

Dϕe−
R

L

for the Lagrangian (2) may be rewritten by introducing

1 ¼
Z

Dσδðσ − ϕ⃗2Þ ¼
Z

DσDζei
R

ζðσ−ϕ⃗2Þ;

performing the integration over σ, and separating the
auxiliary field into a zero mode and fluctuations as

Z ¼
ffiffiffiffiffiffiffiffiffiffi
βVN
16λπ

r Z
dζ0e−ðζ

2
0
NβV=16λÞ

Z
DϕDζe−S0−SI : ð3Þ

Here V is the volume of the Euclidean directions x1 and x2.
The action has been split into

S0 ¼
1

2

Z
d3x

�
ð∂μϕ⃗Þ · ð∂μϕ⃗Þ þm2ϕ⃗2 þ iζ0ϕ⃗

2 þ ζ2N
2λ

�
;

SI ¼ i
Z

d3xζϕ⃗2; ð4Þ

and ζ0 denotes the global zero mode of ζ. In the limit
N → ∞, one may neglect SI , and the remaining path
integrations can be performed analytically leading to

Z ¼
ffiffiffiffiffiffiffiffiffiffi
βVN
16λπ

r Z
dζ0e−βVN½ðζ2

0
=16λÞþJð

ffiffiffiffiffiffiffiffiffiffiffi
m2þiζ0

p
Þ�; ð5Þ

where denoting
PR

K ¼ T
P

n

R ½d2−2ϵk=ð2πÞ2−2ϵ� in dimen-
sional regularization gives [4]

JðαÞ ¼ 1

2

XZ
K
ln ½ð2πnTÞ2 þ k2 þ α2�: ð6Þ

The dimensionally regulated integral JðαÞ is finite for
ϵ → 0, giving

JðαÞ ¼ −
T3

2π

�
Li3ðeα=TÞ −

α

T
Li2ðeα=TÞ þ

2α3

6T3

−
α2

2T2
ln

1 − eα=T

1 − e−α=T

�
: ð7Þ

The property that the OðNÞ model has no logarithmic
divergences in the large N limit is special to 2þ 1

dimensions. As a consequence, no renormalization is
required, which allows setting the bare mass in the
Lagrangian to zero: m ¼ 0. (Of course, radiative correc-
tions requiring renormalization will arise once 1=N cor-
rections are taken into account. Note that this is different
from the case of N ¼ 4 SYM, where radiative corrections
do not require renormalization for any value of N).
In the large N limit, the partition function (5) can be

evaluated exactly using the method of steepest descent,
leading to

lnZ ¼ βVN

�
−Jð ffiffiffiffiffi

z�
p Þ þ z�2

16λ

�
; ð8Þ

where z� ¼ iζ0 is the stationary point of the action given as
the solution of the equation

z� ¼ 4λIð ffiffiffiffiffi
z�

p Þ; ð9Þ

where

IðαÞ ¼ 2
dJðαÞ
dα2

¼ −
α

4π
−

T
2π

ln ð1 − e−α=TÞ: ð10Þ

Putting z� ¼ ξ2T2, Eq. (9) becomes

T
λ
ξ2 ¼ −

ξ

π
−
2

π
ln ð1 − e−ξÞ; ð11Þ

which is similar to the result found in Ref. [8] for N ¼ 1
using self-consistent mean-field resummations. (See, e.g.,
Ref. [9] for a discussion on how the large N and mean-field
resummation relate to each other in the context of scalar
field theory).
The finite-temperature pressure P for the massless OðNÞ

model in 2þ 1 dimensions in the large N limit is then
found from (8) as

P ¼ T
∂ lnZ
∂V ¼ −N

�
Jð ffiffiffiffiffi

z�
p Þ þ z�2

16λ

�
; ð12Þ

and the entropy density is given by

s ¼ ∂P
∂T ¼ −N

∂Jð ffiffiffiffiffi
z�

p Þ
∂T

����
z�
;

s ¼ NT2

4π

�
ξ3 þ ξ2 ln

1 − e−ξ

ð1 − eξÞ3 − 6ξLi2ðeξÞ þ 6Li3ðeξÞ
�
;

ð13Þ
where in the first line the stationarity condition of the action
(9) was used.
Another quantity of interest is the retarded correlation

functions of the energy-momentum tensor, e.g.,

Gxy;xy
R ðω;pÞ ¼

Z
d3xeiωt−ip·xhTxyðxÞTxyð0ÞiR; ð14Þ
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where for simplicity I focus on vanishing external momen-
tum p ¼ 0 corresponding to the “scalar channel” in 2þ 1d
in the following. Note that the scalar channel correlator
Gxy;xy

R ðωÞ possesses no hydrodynamic poles [10]. As a
consequence, the physics of thermal widths that is required
for hydrodynamic transport may be ignored for almost all
frequencies, which allows me to neglect effects arising at
subleading order in large N. [Note that the thermal width
may not be ignored for frequencies ðω=TÞ ≤ ð1=NÞ
because of the presence of so-called "pinching poles" in
the retarded correlator in this frequency regime [11].
Hence, the following calculation of Gxy;xy

R ðωÞ can be
expected to be accurate for all frequencies except those
very close to the origin].
The retarded correlator Gxy;xy

R may be obtained by an
analytic continuation of the Euclidean correlator as
Gxy;xy

R ðωÞ ¼ −hTxyTxyiEðωmÞjωm→−iωþ0þ , where

hTxyTxyiEðωmÞ ¼ 2N
XZ

K
k2xk2yΔðωn;kÞΔðωn − ωm;kÞ;

ð15Þ

with Δðωn;kÞ ¼ ½ω2
n þ k2 þ z��−1 and where z� is the

solution to Eq. (9). Here ωn ¼ 2πnT are the bosonic
Matsubara frequencies. Carrying out the frequency sum
and performing the angular average, one finds

Gxy;xy
R ðωÞ ¼ N

4

Z
dkk5−2ϵ

ð2πÞ1−2ϵ
½1þ 2nðEkÞ�E−1

k

ðωþ i0þÞ2 − 4E2
k

; ð16Þ

where nðxÞ¼½ex=T−1�−1 and Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ z�

p
. Writing k2¼

E2
k−ðω2=4Þ−½z�−ðω2=4Þ� and accordingly expanding the

factor k4 in the integrand, the retarded correlator is given by
three parts: GR ¼ G1ðωÞ þ ½z� − ðω2=4Þ�G2ðωÞ þ ½z�−
ðω2=4Þ�2G3ðωÞ. The first two parts G1 and G2 are easily
evaluated using nðEÞ ¼ P∞

n¼1 e
−nE=T and do not contain

logarithmic divergencies in dimensional regularization so
that the limit ϵ → 0 may be taken. I find

G1ðωÞ ¼ −
NT3

8π

�
ξω2

16T2
−
ξ3

12
þ Li3ðe−ξÞ þ ξLi2ðe−ξÞ

−
1

2

�
ξ2 −

ω2

4T2

�
lnð1 − e−ξÞ

�
;

G2ðωÞ ¼ −
NT
16π

½ξþ 2 lnð1 − e−ξÞ�;

G3ðωÞ ¼
N
4

Z
∞

ξT

dE
2π

1þ 2nðEÞ
ðωþ i0þÞ2 − 4E2

; ð17Þ

where again z� ¼ ξ2T2 was used. The partG3 does not seem
to be expressible in closed form in terms of elementary
functions. However, the analytic structure ofG3 may be gle-
aned from writing 1þ 2nðEÞ ¼ T

P∞
n¼−∞ð2E=ω2

n þ E2Þ
and performing the integration over E, finding

G3ðωÞ ¼
N
8πT

X
n

ln
ξ2− ω2

4T2

ξ2þð2πnÞ2
ω2

T2 þ 4ð2πnÞ2 : ð18Þ

Results.—As outlined in the introduction, because the
only dimensionless parameter for the theory is T=λ, the
weak-coupling limit corresponds to the limit of T → ∞. In
this case, Eq. (11) gives ξ2 → ðλ=πTÞWðπT=λÞ → 0, where
WðxÞ is the product log function. It is straightforward to
find the entropy density (13) for ξ → 0 in this case:

lim
λ=T→0

s ¼ 3NT2ζð3Þ
2π

¼ sfree: ð19Þ

In the opposite limit of strong coupling, the solution to (11)
is ξ → 2 lnð1þ ffiffiffi

5
p

=2Þ, for which Eq. (13) gives

lim
λ=T→∞

s ¼ 12NT2ζð3Þ
10π

¼ 4

5
sfree; ð20Þ

which was pointed out already in Refs. [6,8].
For intermediate values of λ=T, s=sfree can be evaluated

numerically from Eq. (13). The corresponding result is
shown in Fig. 1. I find that s=sfree decreases monotonically
with an increasing coupling constant.
Inspecting the retarded correlator in the scalar channel

(16), one finds that for nonzero coupling (and hence ξ ≠ 0)
the parts G1 and G2 are analytic in the whole complex
frequency plane, while G3 has logarithmic branch cuts
originating from the points ω ¼ �2ξT, reminiscent of the
weak-coupling results found in Ref. [7]. However, note
that Gxy;xy

R ðωÞ does not have any singularities or poles. The
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Entropy Density of O(N) model in 2+1d

FIG. 1. The ratio s=sfree for the OðNÞ model in 2þ 1 dimen-
sions in the large N limit for all temperatures and couplings.
Results are shown using a compactified interval ðT=λþ TÞ ∈
½0; 1� in order to show all coupling values. Arrows indicate the
free theory result (19) and the strong-coupling result (20). See the
text for details.
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logarithmic singularities at ω ¼ �2ξT are canceled by the
factor ξ2 − ðω2=4T2Þ multiplying G3, and the limit ω →
2iωn of G3 is regular. (It should be pointed out that, in the
case of 3þ 1d and weak coupling ξ → 0, G3 possesses
poles at ω ¼ −4πiTn, n ∈ N similar to the weak-coupling
results for the glueball correlator in Ref. [12].)
The singularity structure of G3ðωÞ consisting of two

logarithmic branch cuts does not change qualitatively when
changing the coupling λ as long as ðλ=TÞ ≫ ð1=NÞ. The
origin of the branch cuts is governed by the solution of
Eq. (11), ranging from ðω=TÞ ¼ �4 lnð1þ ffiffiffi

5
p

=2Þ ≃ 1.92
at λ ¼ ∞ to ω → 0 for λ → 0. Note that the result at λ ¼ ∞
matches the structure found for the charge response
in Ref. [13].
However, when ðλ=TÞ ∼ ð1=NÞ or smaller, the structure

of GRðωÞ near ω ¼ 0 is sensitive to 1=N effects such as
the thermal widths. Since these effects are not included in
the calculation of Eq. (18), the singularity structure of
GRðωÞ may differ from those discussed above when
ðλ=TÞ ≪ ð1=NÞ.
Universality in the strong-coupling limit.—The factor of

4=5 for the OðNÞ model in Eq. (20) in 2þ 1 dimensions is
suspiciously similar to the factor of 3=4 found for N ¼ 4
SYM in 3þ 1 dimensions. As a result, one might wonder if
the similarity between a purely bosonic theory in three
dimensions and a supersymmetric theory in four dimen-
sions is just a fluke. To address this issue, I calculate the
ratio s=sfree at zero temperature and infinite coupling in a
large class of stable bosonic large N CFTs in 2þ 1
dimensions. Let me thus consider a Lagrangian density
where the potential part of (2) is modified to

λ

N
ðϕ⃗2Þ2 → N ×Uðϕ⃗2=NÞ; ð21Þ

withUðxÞ an arbitrary function that should possess no local
minima except for U0ð0Þ ¼ 0 with U00ð0Þ > 0 (to avoid
spontaneous mass generation and, hence, breaking the
CFT) and fulfill Uðx → ∞Þ → ∞. Introducing the aux-
iliary fields σ and ζ as before, the large N partition function
is given by

lnZ ¼ βVN

�
−Jð ffiffiffiffiffi

z�
p Þ þ z�σ�

2
−Uðσ�Þ

�
; ð22Þ

with z�, σ� the location of the saddle point of the action

σ� ¼ Ið ffiffiffiffiffi
z�

p Þ; z� ¼ 2U0ðσ�Þ: ð23Þ

[Note that for UðσÞ ¼ λσ2 these reduce to the gap equa-
tion (9)]. In a CFT, there are no zero-temperature mass
scales, so by dimensional reasons z� ¼ ξ2T2. In the low-
temperature limit, then z� → 0 and, hence, U0ðσ�Þ → 0.
Since our condition on UðσÞ was that its only minimum
was at σ ¼ 0, we can expand U0ðσÞ around σ ¼ 0 as

U0ðσ�Þ ¼ 2λ1σ
� þ 3λ2σ

�2 þ 4λ3σ
�3 þ � � � ¼ ξ2T2

2
; ð24Þ

where λ1, λ2, λ3, … are coupling constants. The constraint
U00ð0Þ > 0 implies that λ1 ≥ 0, and, hence, the solution to
(24) for T → 0 is σ� ¼ ðξ2T2=4λ1Þ. Plugging this value for
σ� into (23) leads to

ξ2T
4λ1

¼ IðξTÞ
T

¼ −
ξ

π
−
2

π
ln ð1 − e−ξÞ: ð25Þ

In the zero-temperature limit, the left-hand side of this gap
equation vanishes, and one finds ξ ¼ 2 lnð1þ ffiffiffi

5
p

=2Þ, as
before. This shows that the thermal mass in the zero-
temperature limit is always given by twice the logarithm of
the golden ratio, regardless of the form of the potential
UðσÞ within the class considered here. As a consequence,
the branch points of the retarded correlator Gxy;xy

R ðωÞ
located at ðω=TÞ ¼ �4 lnð1þ ffiffiffi

5
p

=2Þ can be regarded as
universal in the low-temperature or strong-coupling limit.
A similar feature holds for the entropy density. Since the

implicit temperature dependence in z�, σ� does not con-
tribute to the temperature derivative in (13) because of the
saddle point conditions (23), the result found in Eq. (13) is
universal. As a consequence,

s
sfree

¼ 4=5 ð26Þ

holds for a large class of bosonic large N CFTs in
2þ 1 dimensions in the low-temperature and strong-
coupling limit.
Discussion.—In this work, exact results for the OðNÞ

model in 2þ 1 dimensions at a finite-temperature in the
large N limit have been discussed. It was found that the
OðNÞ model has a weak-strong relation of the entropy
density similar to the famous 3=4 factor forN ¼ 4 SYM in
Eq. (1), except that the ratio happens to be 4=5 instead of
3=4, and that the calculation was done entirely on the field-
theory side without any invocation of gauge-gravity duality.
For the OðNÞmodel, the factor of 4=5 is simply the result of
a finite-thermal mass for λ → ∞, leading to an effective
reduction in the number of degrees of freedom at strong
coupling compared to weak coupling, and the result is
universal within a large class of bosonic CFTs.
Whereas for N ¼ 4 SYM only perturbative expansions

for the ratio s=sfree at λ ¼ 0 and λ ¼ ∞ exist, the result (13)
presented here for the OðNÞ model is valid for all
couplings. To my knowledge, this is only example of a
finite-temperature CFTwhere the entropy density is known
for arbitrary coupling.
In addition to the entropy density, the retarded energy-

momentum tensor correlator in the scalar channel was
calculated at a finite-temperature. This quantity is of
interest in the context of gauge-gravity duality, because
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the singularity structure of hTxyTxyiR is expected to
correspond to the quasinormal mode frequencies of a
black-brane in AdS4 [14] with Hawking temperature T.
It was found that the retarded correlator in the scalar
channel in the large N, large coupling limit possesses
logarithmic branch cuts originating from the points
ω ¼ �4T lnð1þ ffiffiffi

5
p

=2Þ, but no singularities. The structure
of the retarded correlator stays qualitatively the same as the
coupling is decreased from infinity, but the origin of the
branch cuts moves closer to the origin.
Also, given the conjectured duality of the OðNÞmodel in

the large N limit, the present results may allow for the
possibility of studying alternative theories of gravity in a
controlled setting.
It is likely that the present calculation can be extended to

include 1=N effects, e.g., using the nonperturbative resum-
mations schemes presented in Refs. [9,15]. It is my hope
that this could help answer a variety of open questions, such
as transport phenomena in quantum field theories at
arbitrary coupling.
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