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We show that supersymmetry is anomalous in N ¼ 1 superconformal quantum field theories (SCFTs)
with an anomalous R symmetry. This anomaly was originally found in holographic SCFTs at strong
coupling. Here we show that this anomaly is present, in general, and demonstrate it for the massless
superconformal Wess-Zumino model via a one-loop computation. The anomaly appears first in four-point
functions of two supercurrents either with two R currents or with an R current and an energy-momentum
tensor. In fact, the Wess-Zumino consistency conditions together with the standard R-symmetry anomaly
imply the existence of the anomaly. We outline the implications of this anomaly.
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Anomalies of symmetries play an important role in
quantum field theories. If a global symmetry is anomalous,
classical selection rules are not respected in the quantum
theory, and classically forbidden processes may occur. This
is a feature of the theory, and it is linked with observable
effects. For example, the axial anomaly explains the π0

decay and leads to the resolution of the Uð1Þ problem in
QCD [1,2]. On the other hand, anomalies in local (gauge)
symmetries lead to inconsistencies, such as lack of unitar-
ity, and they must be canceled. An important corollary is
that anomalous global symmetries cannot be consistently
coupled to corresponding local symmetries. Reviews on
anomalies in quantum field theories may be found in
Refs. [3,4].
Anomalies in supersymmetric theories.—In this Letter,

we discuss a new anomaly in four-dimensional super-
symmetric quantum field theories with an anomalous R
symmetry: Global supersymmetry itself is anomalous. This
anomaly was discovered in the context of superconformal
theories that can be realized holographically [5]. Here, we
show that the same anomaly arises in the perturbation
theory in the simplest supersymmetric model: the free
superconformal Wess-Zumino (WZ) model.
An anomaly may be detected either by putting the theory

on a nontrivial background or by computing correlation
functions on a flat background and checking whether the
Ward identities are satisfied. The latter method was the one
that led to the original discovery of anomalies via one-loop

triangle diagrams [1,2]. Here, we will carry out the
analogous computation for the supersymmetry anomaly.
The anomaly is associated, in particular, with anomalous
one-loop contributions to four-point correlation functions
between two supersymmetry currents and two R currents or
an R current and an energy-momentum tensor. We will
discuss the former in the free superconformal WZ model,
but analogous contributions would arise in any supersym-
metric theorywith a (softly broken) anomalousR symmetry.
Actually, as will be sketched below and is shown in detail in
the companion paper [6], theWZ consistency conditions [7]
together with the standard triangle anomalies imply that
supersymmetry must be anomalous.
Discussion of anomalies in 4d (super)conformal quan-

tum field theory (QFT) has a long history. It has been
known since the 1970s [8,9] that the trace of the stress
tensor T μ

μ is anomalous in the presence of a curved
background metric gμν and background source Aμ for a
chiral current J μ, and the R current is similarly anomalous.
Moreover, there are generally mixed anomalies involving
two energy-momentum tensors and a chiral current [10,11].
It has also been known since Ref. [12] that the currents sit
in a supermultiplet, as do the anomalies. In particular, the
trace anomaly and the R-current anomaly are in the same
multiplet as the gamma trace of the supercurrent, γμQμ. The
latter is an anomaly in the conservation of the special
supersymmetry current, xνγνQμ. It follows that special
supersymmetry (sometimes also called S supersymmetry)
is anomalous. It was believed, however, that supersym-
metry itself (sometimes called Q supersymmetry) is pre-
served; i.e., the conservation of Qμ is nonanomalous.
There have been extensive studies in the past regarding

anomalies in supersymmetry. It was realized early on
[13–18] that one cannot maintain at the quantum level
simultaneously ∂μQμ ¼ 0 and γμQμ ¼ 0 and, if the model
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is a gauge theory, gauge invariance: One of the three
conditions must be relaxed, and the standard choice is to
have a superconformal anomaly. This is the standard
superconformal anomaly mentioned above and is distinct
from the anomaly discussed here. Also distinct is the
Konishi anomaly [19,20], which is a superspace version
of the chiral anomaly in supersymmetric gauge theories.
Another set of studies, reviewed in Ref. [21], considers

the effective action for elementary fields and examines
whether it is invariant under supersymmetry including loop
effects; it investigates the conservation of the supercurrent
inside correlators of elementary fields and/or solves the WZ
consistency conditions relevant for this setup and finds no
supersymmetry anomaly. This does not contradict the
results we present below: To find the anomaly, one should
either put the theory on a nontrivial background or consider
correlation functions of (classically) conserved currents.
(To illustrate this point, consider a free fermion in a
complex representation in flat spacetime. This theory has
a standard axial anomaly originating from the three-point
function of the axial current. However, if one looks only at
correlators of elementary fields, these are nonanomalous,
and the axial current inside such correlators is conserved.)
Studies involving correlators of currents have also
appeared, but typically only discuss three-point functions
of bosonic currents. As mentioned above, the supersym-
metry anomaly appears first in four-point functions involv-
ing two supercurrents and two bosonic currents, and to our
knowledge these have not been computed before.
Anomalies associated with correlation functions of

conserved currents can be analyzed by coupling the
currents to external sources, which in our case form an
N ¼ 1 superconformal multiplet. As such, the anomaly we
discuss here could be related to existing superspace results
on anomaly candidates for D ¼ 4, N ¼ 1 supergravity
theories [22–26] (in particular, in type II anomalies in
Ref. [25]), though we emphasize that in our case the
supergravity fields are external and thus nondynamical
(off shell).
A supersymmetry anomaly appears in super Yang-Mills

(SYM) theory in the WZ gauge when there are gauge
anomalies [27] (see also [28–30]). This anomaly is easy to
understand: In the WZ gauge, supersymmetry transforma-
tions require a compensating gauge transformation, and this
transfers the anomaly from the gauge sector to supersym-
metry. When the SYM theory is consistent at the quantum
level (i.e., the gauge anomalies cancel), then supersym-
metry is also nonanomalous. A supersymmetry anomaly
appears in theories with gravitational anomalies [31–33], as
one may anticipate based on the fact that the energy-
momentum tensor and the supercurrent are part of the same
supermultiplet. Indeed, this supersymmetry anomaly sits in
the same multiplet as the gravitational anomaly.
Here, we will discuss a supersymmetry anomaly in

consistent QFTs (no gauge anomalies) which have a

conserved energy-momentum tensor. We also emphasize
that we are concerned with local anomalies, not with beta
functions.
Holographic anomalies.—The anomaly we discuss here

was first computed holographically [5]. In holography,
given a bulk action, one can use holographic renormaliza-
tion [34,35] to compute the Ward identities and anomalies
of the dual QFT. AdS=CFT relates the N ¼ 1 super-
conformal quantum field theory (SCFT) in four dimensions
to N ¼ 2 gauged supergravity in five dimensions. Starting
from gauged supergravity in an asymptotically locally
AdS5 spacetime and turning on sources for all super-
conformal currents, one can compute the complete set of
superconformal anomalies. This computation is available
for holographic CFTs, which, in particular, means that the
central charges should satisfy a ¼ c as N → ∞ [34].
Early attempts to compute the supertrace Ward identity

can be found in Refs. [36,37], but these missed contribu-
tions to the anomaly involving the R-symmetry current and
the Ricci tensor. Following the work of Pestun [38], there
was renewed interest in supersymmetric theories on curved
spacetimes and their holographic duals. The holographic
anomalies for bosonic currents were computed in Ref. [39],
reproducing (and correcting) known field theory results
[40]. The full superconformal anomalies for the N ¼ 1
current multiplet were computed holographically in
Ref. [5], while Ref. [41] obtained the superconformal
anomalies in the presence of local supersymmetric scalar
couplings. An analogous holographic computation relevant
to two-dimensional SCFTs was reported in Ref. [42].
The holographic results leave open the possibility that

the anomaly is special to holographic theories at strong
coupling. In this Letter, we show that this is not the case.
One could have anticipated the anomaly based on the
structure of the supersymmetric variation of the super-
current, which is of the schematic form δQμ ∼ γνT μνεþ
Cμνρ∂νJ ρε, whereCμνρ is a tensor constructed from gamma
matrices and the metric. The Ward identity for the four-
point function involving two supercurrents and two R
currents would then involve terms of the form

∂x1
μ hQμðx1ÞQ̄νðx2ÞJ κðx3ÞJ λðx4Þi
∼ δðx1 − x2ÞhδQ̄νðx2ÞJ κðx3ÞJ λðx4Þi þ � � � ; ð1Þ

where the dots denote additional terms [the exact Ward
identity is given (9)]. Using the variation of the super-
current, we find that the rhs contains the three-point
function of three R currents, which is anomalous, and
correspondingly one may anticipate (1) will be anomalous.
Similarly, the same four-point function but with one of the
R currents replaced by an energy-momentum tensor is
expected to be anomalous, since hJT T i is anomalous. To
determine whether an anomaly appears or not, we need to
carry out the computation explicitly. Before we turn to this,

PHYSICAL REVIEW LETTERS 122, 231602 (2019)

231602-2



we discuss the consistency condition that the anomalies
must satisfy.
Wess-Zumino consistency.—Let eaμ, Aμ, and ψμ denote

the sources (vierbein, gauge field, and gravitino) that
couple to the superconformal currents and W½e; A;ψ � be
the generating functional of connected graphs. We define
the currents in the presence of sources (as usual) by

T μ
a ¼ e−1

δW
δeaμ

; J μ ¼ e−1
δW
δAμ

; Qμ ¼ e−1
δW
δψ̄μ

;

ð2Þ

where e≡ detðeaμÞ. In the presence of anomalies

δiW ¼
Z

d4xeϵiAi; ð3Þ

where δi denotes the superconformal transformations, ϵi are
the (local) parameters of the transformations, andAi are the
corresponding anomalies. The variations form an algebra,
½δi; δj� ¼ fkijδk, and using this in (3) we obtain the WZ
consistency condition

Z
d4x½δiðeϵjAjÞ − δjðeϵiAiÞ − fkijeϵkAk� ¼ 0: ð4Þ

The transformation rules and the local algebra they satisfy
are derived in Ref. [6] and are given in Table I.
Assuming the R-symmetry current has the standard

triangle anomalies (i.e., assuming the from of AR in
Table II), the WZ consistency conditions (4) may be
viewed as equations to determine the remaining anomalies.
This computation is presented in Ref. [6], and the results
are summarized in Table II. Note, in particular, that all
anomalies are given in terms of the central changes a and c.
The anomalies of the bosonic currents are in agreement
with the results derived in Refs. [39,40]. The supersym-
metry anomaly AQ that we discuss here is related to the R-
symmetry anomaly AR through the same descent equation
that relates the supersymmetry anomaly discussed in
Ref. [27] to the corresponding gauge anomaly. However,
as noted earlier, there are important differences in the
physics (in Ref. [27], the gauge anomalies must vanish for
consistency of the model, while this is not so for the R

anomalies relevant for us), as well as in the context (the WZ
conditions discussed in Ref. [27] are for a vector multiplet
in flat space, while the anomalies in Table II are those of
N ¼ 1 conformal supergravity [6]).
Here we discuss only one of the WZ equations: the one

obtained by considering the commutator of R symmetry
(with parameter θ) with Q supersymmetry (with para-
meter ε): Z

d4x½δεðeθARÞ − δθðeεAQÞ� ¼ 0: ð5Þ

Using the explicit form of AR, it is easy to see that
δεAR ≠ 0 and the WZ consistency condition requires that
AQ ≠ 0. This argument does not rely on the theory having
conformal invariance, and thus we expect any 4d super-
symmetric theory with an R-symmetry anomaly to have a
corresponding anomaly in the conservation of the super-
current. (This expectation has been verified in the followup
paper [43].)
One may wonder whether this anomaly can be removed

by adding a local counterterm Wct to the action such that
Wren ¼ W þWct is nonanomalous, i.e., δεWren ¼ 0.
Using the commutator of two supersymmetry variations,
½δε; δε0 �, given in Table I, we find

ðδξ þ δλ þ δθÞWren ¼ 0 ⇒ ðδξ þ δλÞWren ≠ 0; ð6Þ
since δθWren ¼ AR ≠ 0. It follows that if one wishes to
preserve supersymmetry, Wct must break diffeomorphisms
and/or local Lorentz transformations. [Note that, since AR
is a genuine anomaly, it is not possible to set the rhs of the
second equation in (6) to zero using a local counterterm.
This implies that there are no further local counterterms
that can restore diffeomeorphisms and local Lorentz
invariance.] Next, we calculate this anomaly by one-loop
computations within a specific model.
Model.—Consider the massless Wess-Zumino action

with one complex bosonic field ϕ and one Majorana
fermionic field χ:

S ¼ −
Z

d4x

�
∂μϕ∂μϕ� þ 1

2
χ̄=∂χ

�
: ð7Þ

The conserved currents are given in Table III. We have
included improvement terms so that classically T μ

μ ¼ 0,
γμQμ ¼ 0 and we are dealing with an N ¼ 1 SCFT.

TABLE I. Transformation rules of the current sources and their algebra, to leading order in the gravitino. All other commutators
vanish, except for that of two diffeomorphisms and two local Lorentz transformations, which take a standard form.

δeaμ ¼ ξλ∂λeaμ þ eaλ∂μξ
λ − λabe

b
μ þ σeaμ − 1

2
ψ̄μγ

aε, δψμ ¼ ξλ∂λψμ þ ψλ∂μξ
λ − 1

4
λabγ

abψμ þ 1
2
σψμ þDμε − γμη − iγ5θψμ,

δAμ ¼ ξλ∂λAμ þ Aλ∂μξ
λ þ ð3i=4Þϕ̄μγ

5ε − ð3i=4Þψ̄μγ
5ηþ ∂μθ, ϕμ ≡ 1

3
γνðDνψμ −Dμψν − ði=2Þγ5ϵρσνμDρψσÞ

½δε; δε0 � ¼ δξ þ δλ þ δθ, ξμ ¼ 1
2
ε̄0γμε, λab ¼ − 1

2
ðε̄0γνεÞωa

νb, θ ¼ − 1
2
ðε̄0γνεÞAν

½δε; δη� ¼ δσ þ δλ þ δθ, σ ¼ 1
2
ε̄η, λab ¼ − 1

2
ε̄γabη, θ ¼ − 3i

4
ε̄γ5η
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From the form of the anomalyAQ in Table II follows that
the first anomalous contribution in flat space correlators
appears in four-point functions involving two supercurrents
and either two R currents or an R current and an energy-
momentum tensor. Here we discuss the former, referring to
Ref. [44] for a detailed account of both cases.
Since we seek to investigate the possibility of a super-

symmetry anomaly, we should not assume the existence of
a supersymmetric regulator: The one-loop computation
should not be done in superspace. (On the other hand,
the form of anomalies respects the symmetries they break,
and, thus, one may use superspace to analyze possible
anomaly candidates.) Wewill instead do the computation in
components and use the same regulator as in the original
triangle anomaly computation, namely, momentum cutoff
[1,2]. We will consider the four-point correlation function

hQμðx1ÞQ̄νðx2ÞJ κðx3ÞJ λðx4Þi: ð8Þ
Standard path integral manipulations show that this corre-
lator classically satisfies the following Ward identity:

− i∂x1
μ hQμ

1Q̄
ν
2J

κ
3J

λ
4i

¼ δð4Þðx12ÞhδQ̄ν
1J

κ
3J

λ
4i þ fδð4Þðx13ÞhδJ κ

1Q̄
ν
2J

λ
4i

− ∂x1
ρ ½δð4Þðx13ÞhδJ 0ρκ

1 Q̄ν
2J

λ
4i� þ ð3; κÞ ↔ ð4; λÞg

− ∂x1
ρ ½δð4Þðx12ÞhδQ̄0νρ

1 J κ
3J

λ
4i�; ð9Þ

where we have used the shorthand notation QμðxiÞ≡Qμ
i ,

etc., xij ≡ xi − xj, and the contributions on the rhs are

expressed in terms of the supersymmetry variations of the
currents: δεQμ ¼ εδQμ þ ∂νεδQ0μν and idem for J μ. A
similar Ward identity follows from R invariance.
One-loop computation.—We now compute (9). Since the

theory is free, the complete computation is one loop. The
four-point function receives contributions from three
classes of Feynman box diagrams, shown in Fig. 1; this
computation is straightforward but tedious.
One may verify that (9), as well as the corresponding R-

symmetry Ward identity, is (naively) satisfied by a simple
shift of the loop momentum, much the same way as the
triangle Ward identity is naively satisfied. Again in parallel
with the triangle anomaly, (part of) the one-loop contribu-
tions to the four-point function are superficially linearly
divergent. This implies that there is a momentum routing
ambiguity when using a momentum cutoff regulator (see,
for example, Jackiw’s lectures in Ref. [3]).
We proceed by taking the ∂x3

κ of (9) and subtracting from
it the ∂x1

μ derivative of the corresponding R-symmetry Ward
identity. By construction, the four-point functions cancel,
and one is left with an identity involving three-point
functions only (namely, the terms appearing on the rhs
of the Ward identities). Had these three-point functions
been nonanomalous, this would be an identity. However,
the three-point functions involve the anomalous hJJJ i
correlator, and this implies that either (9) or the corre-
sponding R-symmetry Ward identity should be anomalous.
Assuming the form of the bosonic Ward identities is
standard (i.e., given by the expressions in Table II), the

TABLE II. Anomalous Ward identities and corresponding anomalies [6]. (Dμψν ≡ ½∂μ þ 1
4
ωab
μ ðe;ψÞγab þ iγ5Aμ�ψν − Γρ

μνψρ with
ωab
μ ðe;ψÞ≡ ωab

μ ðeÞ þ 1
4
ðψ̄aγμψb þ ψ̄μγaψb − ψ̄μγbψaÞ; ∇μ is the Levi-Civita connection; ϕμ is defined in Table I.)

eaμT
μ
a þ 1

2
ψ̄μQμ ¼ AW , ∇μJ μ þ iψ̄μγ

5Qμ ¼ AR Weyl square: W2 ≡WμνρσWμνρσ

DμQμ − 1
2
γaψμT

μ
a − 3i

4
γ5ϕμJ μ ¼ AQ, γμQμ − 3i

4
γ5ψμJ μ ¼ AS Euler density: E ¼ RμνρσRμνρσ

− 4RμνRμν þ R2

AW ¼ ðc=16π2ÞðW2 − 8
3
F2Þ − ða=16π2ÞEþOðψ2Þ,

AR ¼ ½ð5a − 3cÞ=27π2�F̃F þ ½ðc − aÞ=24π2�P
Pontryagin density: P ≡ R̃μνρσRμνρσ

R̃μνρσ ≡ 1
2
ϵκλμνRκλρσ

AQ ¼ −½ð5a − 3cÞi=9π2�F̃μνAμγ
5ϕν þ ½ða − cÞ=6π2�ð∇μðAρR̃ρσμνÞγðνψσÞ

− 1
4
FμνR̃μνρσγρψσÞ þOðψ3Þ

Schouten tensor: Pμν ≡ 1
2
ðRμν − 1

6
RgμνÞ

AS ¼ ½ð5a − 3cÞ=6π2�F̃μν½Dμ − ð2i=3ÞAμγ
5�ψν þ ðic=6π2ÞFμνðγ½σμ δρ�ν − δ½σμ δ

ρ�
ν Þγ5Dρψσ

þ ½3ð2a − cÞ=4π2�Pμνgμ½νγρσ�Dρψσ þ ½ða − cÞ=8π2�
× ðRμνρσγμν − 1

2
Rgμνgμ½νγρσ�ÞDρψσ þOðψ3Þ

Uð1ÞR field strengths: F̃μν ≡ 1
2
ϵρσμνFρσ

F2 ≡ FμνFμν FF̃≡ FμνF̃μν

TABLE III. The (on-shell) energy-momentum tensor T μ
a, the R-symmetry current J μ, and the supersymmetry

current Qμ, for the massless superconformal WZ model in flat space.

T μ
a ¼ ðημρησa þ ημσηρa − ημαηρσÞ∂ρϕ

�∂σϕ − 1
3
ð∂μ∂a − ημa∂2Þðϕ�ϕÞ þ 1

4
χ̄ðγμ∂a þ γa∂μÞχ

J μ ¼ ð2i=3Þðϕ�∂μϕ − ϕ∂μϕ� þ 1
4
χ̄γμγ5χÞ

Qμ ¼ ð1= ffiffiffi
2

p Þð=∂ϕγμχR þ =∂ϕ�γμχLÞ þ ð ffiffiffi
2

p
=3Þγμν∂νðϕχR þ ϕ�χLÞ, χR ≡ 1

2
ð1 − γ5Þχ.
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R-symmetry four-point function Ward identity is not
anomalous, and, therefore, the supersymmetry Ward iden-
tity is anomalous. This computation is the counterpart of (5)
but now in terms of Feynman diagrams.
One can then show that there is a momentum routing

such that (i) the triangle R-symmetry anomaly is repro-
duced, (ii) the four-point R-symmetry Ward identity is
nonanomalous, and (iii) the supersymmetry Ward identity
is anomalous, with the anomaly given in Table II and with
c ¼ 2a ¼ 1=24, which are the values in our model. In
addition, upon taking the gamma trace of the same four-
point function, γμhQμQ̄νJ κJ λi, one automatically repro-
duces the AS anomaly given in Table II.
In general, changing the momentum routing, one may

move the anomaly from one conserved current to another.
This would be equivalent to adding local finite counter-
terms, and as argued earlier there is no choice of such
counterterms that would remove the supersymmetry
anomaly while preserving diffeomorphisms and local
Lorentz transformations.
It is also straightforward to check that the same anomaly

is present in the massive WZ model as well. As in the case
of standard triangle anomalies, adding a mass term modi-
fies the Ward identities, but the anomaly remains the same.
This is as expected, since the anomaly arises from the UV
behavior of Feynman diagrams and the parts of the loop
computation that give rise to the anomaly remain the same.
Implications of the anomaly.—Let us conclude with a

few comments about the implications of this anomaly. As
mentioned earlier, an important consequence is that a SQFT
with such a supersymmetry anomaly cannot be coupled to
dynamical supergravity. (The anomalous R symmetry alone
implies that coupling to a supergravity that gauges the R
symmetry is inconsistent. Here, we see that couplings to
supergravity that do not gauge the R symmetry are also
inconsistent.) In the context of supersymmetric model
building, one does not usually work with theories with
an R symmetry, anomalous or nonanomalous; nonanom-
alous R symmetry is not compatible with gaugino masses
(see [45]). More generally, one does not expect a theory
with continuous symmetry to emerge from a consistent

quantum theory of gravity, such as string theory. However,
such models may be considered in bottom-up approaches
(see [46] for a recent example). Similar comments apply to
bottom-up string cosmology models. This anomaly also
affects supersymmetric localization computations, as has
already been noted in Refs. [5,6,41,42]. However, it is
possible that a suitable noncovariant local counterterm (for
theories with a ¼ c, such a counterterm evaluated on
supersymmetric backgrounds of the form S1 ×M3, with
M3 a Seifert manifold, should agree with the counterterm
used in Ref. [47]) may cancel the rigid supersymmetry
anomaly at the expense of breaking certain diffeomor-
phisms on a given supersymmetric background. From a
more formal perspective, it would be interesting to explore
how the supersymmetry anomaly is captured in index
theorems. It would also be interesting to investigate the
existence of such an anomaly in other dimensions and/or
extended supersymmetry.
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