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We present a closed expression for the octagon form factor which appears as a building block in a class
of four-point correlation functions in N ¼ 4 supersymmetric Yang-Mills theory considered recently by
Coronado. The octagon form factor is expressed, to all loop orders, as the determinant of a semi-infinite
matrix. We find that perturbatively at weak coupling the entries of this matrix are linear combinations of
ladder functions with simple rational coefficients.
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Introduction.—The discovery of integrability in the
planar N ¼ 4 supersymmetric Yang-Mills (SYM) theory
[1] initiated a “world sheet” approach powered by the
analytic tools developed for two-dimensional solvable
models. In this approach a single-trace operator is described
as a state of a two-dimensional field theory compactified on
a circle. By gauge-string duality, this is also a closed string
in the AdS5 × S5 background.
The full spectrum of such operators has been obtained

for any value of the gauge coupling applying the integra-
bility techniques related to the thermodynamic Bethe ansatz
[2–4]. The computation of the three-point functions needed
a new theoretical input. It came with the “hexagon
proposal” of Basso, Komatsu, and Vieira [5]. The authors
of Ref. [5] proposed to split the world sheet of a three-point
function into two hexagonal patches, each containing a
curvature defect. The observables associated with the two
hexagons are special form factors which can be computed
using the symmetries of the theory. The prescription using a
“hexagonalization” of the world sheet was then extended to
the case of the four-point functions [6–8] and to nonplanar
corrections [9,10]. The hexagons are glued back by
inserting complete sets of virtual states in the intermediate
channels.
The contribution of virtual particles in the spectrum of

“heavy” operators (i.e., with large dimensions) is sup-
pressed in the weak coupling limit. This is also the case for
the three-point functions of such operators. In the strong
coupling limit the virtual particles cannot be neglected
anymore, and in the cases amenable to analytical treatment

their contribution is expressed in terms of Fredholm
determinants [11].
In the computation of the four-point functions of heavy

operators by hexagonalization, the virtual particles are not
suppressed at weak coupling anymore [6] and the evalu-
ation of their contribution represents a challenge. Recently,
Coronado obtained some remarkable results for the four-
point functions of heavy half-BPS operators with particular
polarizations of the R charges [12,13]. In that configura-
tion, the four-point function factorizes into the sum of
products of the so called octagon form factors, or octagons.
An octagon is obtained by gluing together two hexagons by
inserting a complete set of virtual particles. The Boltzmann
weights of the virtual particles depend on the coordinates
and the R-charge polarizations of the two hexagons, as well
as on the length l of the “bridge” composed of tree-level
propagators (the vertical lines in Fig. 1).
The octagon was expressed in Ref. [12] as an infinite

series of nonsingular contour integrals which can be
evaluated by residues. It is claimed that full perturbative
expansion of the octagon can be recast as a multilinear

FIG. 1. A sketch of the octagonOl. The red lines symbolize the
mirror particles propagating between the two hexagons, each one
characterized by a rapidity u and a bound state number a. The two
hexagons are separated by a bridge of length l.
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combination of conveniently normalized ladder integrals
f1; f2;… [14], see Eq. (26) for their definition,

Ol ¼ 1þ
X∞
n¼1

Xn

X∞
J¼nðnþlÞ

g2J
X

j1þ���jn¼J

cj1;���jnfj1 � � �fjn ; ð1Þ

where the dependence on the polarizations is carried by the
factors

Xn ¼
1

2
½ðXþÞn þ ðX−Þn� ð2Þ

and the coefficients cj1…jn are rational numbers to be
determined. The conjectured form of the perturbative
octagon, Eq. (1), is close in spirit to the result of Basso
and Dixon [15] obtained for the fishnet limit of the N ¼ 4
SYM [16]. (The integrability of the fishnet Feynman graphs
was first established by A. Zamolodchikov [17].) The
analytic expression obtained in Ref. [15] for the fishnet
has the form of a single determinant of ladders, while the
octagon can be expanded, as shown in Ref. [13], in the
minors of the semi-infinite matrix

f∞×∞ ¼ ½fiþjþ1�i;j≥l: ð3Þ
In this Letter we report a formal solution for the octagon

at finite ’t Hooft coupling g in the form of the Pfaffian of a
semi-infinite matrix, or equivalently as a determinant of the
same matrix. We confirm the Ansatz Eq. (1) to high loop
orders observing that the resulting determinant is equiv-
alent perturbatively to the determinant of a simpler matrix
whose elements are expressible in terms of the ladder
functions alone. This leads to an analytic expression for the
coefficients in Eq. (1). Moreover, the exact determinant
representation for finite g opens the possibility of analyti-
cally accessing the four-point function beyond the pertur-
bative expansion.
We report here the results and the general logic of the

derivation, leaving the proofs to an extended paper. We start
in the second section with the representation of the
contributions of the virtual particles as Fredholm
Pfaffians, outlined in [18]. Then in the third section we
perform the sum over bound states and give the result of the
octagon as a single Fredholm Pfaffian, or the square root of
a Fredholm determinant. In the fourth section we use a
basis of Bessel functions to transform the Fredholm
determinant into the determinant of a semi-infinite matrix.
In the fifth section we derive the weak coupling expansion
and show that it can be organized as a sum of minors of a
semi-infinite matrix of ladders.
The octagon form factor.—In this section we recall the

series expansion of the octagon as a sum over virtual
particles, which will be our starting point. The virtual
particles and their bound states propagate in the mirror
dynamics and their energy and momentum are written, with
the help of the shift operator D ¼ ei∂u=2, as

p̃aðuÞ ¼
1

2
gðDa þ D−aÞðx − 1=xÞ;

ẼaðuÞ ¼ ðDa þ D−aÞ log x; a ¼ 1; 2;…; ð4Þ

where x ¼ xðuÞ is given by the Zhukovsky map,

u=g ¼ xþ 1=x: ð5Þ
Our goal is to evaluate the octagon with four physical

and four mirror edges with no excitations at the physical
edges, as shown schematically in Fig. 1. The octagon is
obtained by gluing the hexagons H1 and H2 along the
common edge ð0; 0Þ − ð∞;∞Þ by inserting a complete set
of virtual states ψ with energies Eψ . Symbolically

Ol ¼
X
ψ

hH2jψiμ̃ψe−Eψlhψ jH2i; ð6Þ

where μ̃ψ is a measure which will be detailed below. A state
ψ may contain any number of fundamental particles and
their bound states transforming in the antisymmetric
representations of psuð2j2Þ × psuð2j2Þ. An n-particle
virtual state ψ is completely characterized by the rapidities
and the bound state numbers (uj, aj) of the individual
particles (j ¼ 1;…; n).
The four-point function depends on the cross ratios in the

Minkowski and in the flavor spaces, parametrized in
Ref. [12] by z; z̄; α; ᾱ. Sometimes it will be more convenient
to use instead the phases ξ;ϕ;φ; θ defined as

z ¼ e−ξþiϕ; z̄ ¼ e−ξ−iϕ;

α ¼ eφ−ξþiθ; ᾱ ¼ eφ−ξ−iθ: ð7Þ

Applying the hexagonalization prescription, one obtains
the series expansion for the octagon [12]

Ol ¼ 1

2

X
�

X∞
n¼0

X
a1;…;an≥1

ðX�=
ffiffiffiffiffi
zz̄

p Þn
n!

Z Yn
j¼1

duj
2π

×
sinðajϕÞ
sinϕ

μajðujÞ
Y
j<k

H̃aj;akðuj; ukÞ: ð8Þ

The different factors in the integrand are defined as follows.
The symmetric bilocal factor H̃abðu; vÞ is the product of

Kðu; vÞ ¼ xðuÞ − xðvÞ
xðuÞxðvÞ − 1

: ð9Þ

with the four possible shifts of the arguments u and v in
�ia=2 and �ib=2, respectively, which we write symbo-
lically as

H̃abðu; vÞ ¼ Kðu; vÞðDa
uþD−a

u ÞðDb
vþD−b

v Þ: ð10Þ
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The local integration measure is

μaðuÞ ¼
1

ig
e−ẼaðuÞle2iξp̃aðuÞ

×
1

ðx − x−1ÞDaþD−a

xðuþ i a
2
Þ − xðu − i a

2
Þ

xðuþ i a
2
Þxðu − i a

2
Þ − 1

: ð11Þ

Finally the dependence on the polarizations is contained in
the factors

X� ¼ 2½cosϕ − coshðφ ∓ iθÞ� ffiffiffiffiffi
zz̄

p
: ð12Þ

The octagon as a Fredholm Pfaffian.—The expansion
for the octagon, Eq. (8), resembles the grand partition
function of a Coulomb gas of dipoles. As it was first
pointed out in Ref. [18], the product of the bilocal weights
in the n-particle sector can be written as a Pfaffian of a
2n × 2n matrix, and the whole expansion as a sum of two
Fredholm Pfaffians [19],

Ol ¼ 1

2

X
�

X∞
n¼0

ðX�Þn
n!

X
a1;…;an≥1

Z Yn
j¼1

dμðuj; ajÞ

× pf½Kðuj þ iεjaj=2; uk þ iεkak=2Þ�εj;εk¼�1

j;k¼1;…;n

¼ 1

2

X
�
Pf½J þ X�K�: ð13Þ

In the last line J ¼ ½Jεδ�ε;δ¼� is a 2 × 2 antisymmetric
matrix with nonzero elements Jþ− ¼ −J−þ ¼ 1, and K is a
2 × 2 antisymmetric matrix kernel K ¼ ½Kεδ�. The kernel
elements Kεδ act in R × Zþ so that the integral in the
rapidity u ∈ R is accompanied by a sum over the bound
state label a ∈ Zþ. With the help of the shift operator D the
kernel K can be written compactly as

Kðu; a; v; bÞ ¼ ½Kðu; vÞDεa
u Dδb

v �ε;δ¼�: ð14Þ

The last factor in the integration measure [Eq. (11)] is
absorbed into the Pfaffian and the rest gives the integration
measure in Eq. (13), which we write in the form

dμðu; aÞ ¼ 1

ig
ffiffiffiffiffi
zz̄

p du
2π

sinðaϕÞ
sinϕ

ΩlðuÞDaþD−a
; ð15Þ

with

ΩlðuÞ≡ eigξ½xðuÞ−1=xðuÞ�

xðuÞ − 1=xðuÞ xðuÞ
−l: ð16Þ

To compute the Fredholm Pfaffian we first express it as a
square root of a Fredholm determinant,

Pf½J þ X�K� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det½I − X�JK�

q
¼ eS

�
; ð17Þ

where I is the 2 × 2 identity matrix. Then we expand the
exponent S� as an infinite series of cyclic integrals or sums

S� ¼ −
X∞
n¼1

ðX�Þn
2n

In; ð18Þ

where the nth integral or sum reads (with unþ1 ≡ u1, etc.)

In ¼
1

ðig ffiffiffiffiffi
zz̄

p Þn
X

a1;…;an≥1

X
ε1;…;εn¼�

Yn
j¼1

Z
∞

−∞

Yn
j¼1

duj
2πi

×
Yn
j¼1

sinðajϕÞ
sinϕ

Ωl

�
uj − iεj

aj
2

�
Ωl

�
uj þ iεj

aj
2

�

× εjK

�
uj − εj

aj
2
; ujþ1 þ iεjþ1

ajþ1

2

�
: ð19Þ

The sum over the bound state labels can be taken into
account by the difference operator ½cosϕ − cos ∂u�−1
applied to the simpler kernel Eq. (9). We will give the
details of the computation in a forthcoming work [20].
Discrete basis.—To render the Pfaffian representa-

tion useful we have to find a way to also perform the
multiple integrations over the rapidities in the expansion of
S�. The formula we obtain is an infinite-dimensional
version of the Pfaffian integration theorem [21,22]. We
expand the scalar kernel Eq. (9) with jxj > 1 and jyj > 1 as
a double series

Kðu; vÞ ¼ x − y
xy − 1

¼
X∞
m;n¼0

x−nCnmy−m; ð20Þ

where

Cnm ¼ δnþ1;m − δn;mþ1; m; n ≥ 0: ð21Þ

Substituting Eq. (20) in the n-fold cyclic integral, we
achieve that the latter decouples into a sum of products of
simple integrals

Kmn ¼
X
ε¼�

1

2ig
ffiffiffiffiffi
zz̄

p
Z

du
2π

Ωlþnðu − εiϵÞ

×
ε

cos ∂u − cosϕ
Ωlþmðuþ εiϵÞ ð22Þ

withm; n ≥ 0. The arguments on the rhs are displaced from
the real axis by small amounts �iϵ with ϵ > 0 to avoid the
Zhukovsky cut. Introducing the semi-infinite matrices C
andKwith matrix elements given respectively by Eqs. (21)
and (22), the exponents S� take the form

S� ¼ −
1

2

X∞
n¼1

ðX�Þn
n

trðCKÞn: ð23Þ
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The matrix elements ofK can be evaluated by passing to
Fourier space, after which the integral in u can be taken and
results in a product of two Bessel functions. The remaining
integral in the Fourier variable t is

Kmn ¼
g

2i
ffiffiffiffiffi
zz̄

p
Z

∞

jξj
dt

�
i

ffiffiffiffiffiffi
tþξ
t−ξ

q �
m−n

−
�
i

ffiffiffiffiffiffi
tþξ
t−ξ

q �
n−m

cosϕ − cosh t

× Jmþl

�
2g

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − ξ2

p �
Jnþl

�
2g

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − ξ2

p �
: ð24Þ

The transformation to a discrete basis allowed us to write
the Fredholm Pfaffian Eq. (13) as a square root of the
determinant of a semi-infinite matrix

Olðg; z; z̄; α; ᾱÞ ¼
1

2

X
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ½1 − X�CK�

q
: ð25Þ

Equations (24) and (25) give a formal solution for the
octagon for any value of the gauge coupling g.
Determinant formula for the perturbative octagon.—In

the rest of this Letter we will focus on the weak coupling
expansion of the octagon. We will demonstrate the effi-
ciency of our Eq. (23) or Eq. (25), each of which can be
used to reproduce and extend to virtually any loop order the
results of Refs. [12,13].
The perturbative expansion of the matrix elements of K,

Eq. (24), can be expressed in terms of the (conveniently
normalized) ladder Feynman integrals [14]. For the 1 × k
ladder integrals we will use the notations and the normali-
zation of Ref. [13]

fk ¼
X2k
j¼k

ðk − 1Þ!j!
ðj − kÞ!ð2k − jÞ!

× j2ξj2k−j LijðzÞ − Lijðz̄Þ
z − z̄

; ð26Þ

with 2ξ ¼ − log zz̄ defined in Eq. (7). (Up to a factor
v ¼ ð1 − zÞð1 − z̄Þ∶ fCoronadon ¼ −vfheren .) More precisely,
we found that Kij as functions of g, z, z̄ are spanned
by ffmξng2mþngm≥lþ1;n≥0.
Substituting this expansion in moments [Eq. (23)] one

can easily reconstruct, with the help of Mathematica, the
perturbative series for the octagon. Remarkably, all positive
powers of ξ cancel and the result comes out in the form
Eq. (1). This is for now an empirical observation which
awaits its analytic proof. It means that the superfluous ξ
dependence can be eliminated by a unitary transformation.
We can thus simplify drastically the computation by
replacing the matrix K in the traces [Eq. (23)] with the
matrixK∘ obtained by truncating the expansion ofK to the
subset ffmg2mgm≥lþ1.
The matrix elements of K∘ whose indices have the same

parity vanish. This property, satisfied also by the constant

matrix C, implies that det½1 − X�CK∘� is equal to the
square of another determinant, det½1þ X�R�, with the
matrix elements of R given by

Rjk ¼ −K∘
2jþ1;2k þ K∘

2j−1;2k: ð27Þ

Now the square root in Eq. (25) gets resolved and the
determinant representation of the octagon simplifies to

Ol ¼ 1

2

X
�

det ½1þ X�R�: ð28Þ

The perturbative series for R is

Rij ¼
X∞

p¼maxðiþjþl;1þjþlÞ
ð−1Þp−lð2p − 1Þ!

×
2pð2iþ lÞ − ðp − jÞðpþ jþ lÞδi;0Q
ε¼�½pþ εði − jÞ�!½pþ εðiþ jþ lÞ�! fpg

2p:

ð29Þ

Equations (28) and (29) give the all-loop perturbative
solution for the octagon. For actual computations it is
convenient to truncate the semi-infinite matrix R to an
N × N matrix

RN×N ¼ ½Rij�0≤i;j≤N−1 ð30Þ

and use the approximation formula

Ol¼0 ¼
1

2

X
�

detð1þ X�RÞN×N þ oðg2Nð2NþlÞÞ: ð31Þ

For example, with N ¼ 3 the determinant in Eq. (31) gives
the result of Coronado for l ¼ 0 up to g12 terms:

Ol¼0

¼ 1þX 1

�
f1g2−f2g4þ

1

2
f3g6−

5

36
f4g8þ

7f5g10

288
−…

�

þX2

�
f1f3−f22

12
g8−

f1f4−f2f3
24

g10þ…

�

þX3

�ðf1f5f3−f33þ2f2f4f3−f1f24−f22f5Þ
34560

g18þ…

�

þ…

In Ref. [13], the octagon was expanded in a basis of
minors of the matrix Eq. (3). In particular, the lowest loop
order n-particle contribution is proportional to the deter-
minant of the matrix Eq. (3) restricted to the first n rows and
columns,
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Ol ¼
X∞
n¼0

Xng2nðnþlÞðInþl;n þ oðg2ÞÞ;

Inþl;nðz; z̄Þ ¼
detð½fiþjþlþ1�i;j¼0;…;n−1ÞQ
n−1
i¼0 ð2iþ lÞ!ð2iþ lþ 1Þ! : ð32Þ

The lowest term Inþl;n is exactly the expression obtained
by Basso and Dixon [15] for the Feynman integral for an
ðlþ nÞ × n fishnet. One can recognize this pattern in
Fig. 1 where n virtual particles cross l physical particles.
Possibly an interpretation of the higher loop terms in terms
of planar Feynman graphs also exists.
This expansion in the minors of the matrix of ladders

f∞×∞ is compatible with our determinant representation
Eq. (31), which can be written as a sum over all minors of
the matrix R, Eq. (29),

Ol ¼
X∞
n¼0

Xn

X
0≤i1<…<in
0≤j1<…<jn

detð½Riαjβ �α;β¼1;…;n
Þ: ð33Þ

Since the matrix elements ofR behave asRij ∼ g2ðiþjþlÞþ
higher powers of g, the lowest loop order contribution is
given by the term ∼g2nðnþlÞ of the n × n minor with
iα ¼ αþ l − 1, jβ ¼ β þ l − 1, which is exactly Inþl;n.
It is straightforward to extract from Eq. (33) the analytic

formula for the coefficients in the expansion in the
Steinmann basis of minors, but this would go beyond
the scope of this short note.
The representations Eq. (23) or Eq. (25) could give for

the first time analytic access to the correlation functions at
finite g. Remarkably, all the dependence on the gauge
coupling is contained in a single integral Eq. (24). We
would like to address the subtle problem of the computation
of the octagon at finite g in a future work.
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