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We study the collapse of spheroidal configurations of collisionless particles in full general relativity.
This setup was originally considered by Shapiro and Teukolsky, where it was found that prolate
configurations with a sufficiently large semimajor axis gave rise to diverging curvature, but no apparent
horizon. This was taken as evidence for the formation of a naked singularity, in violation of cosmic
censorship. We revisit such configurations using different coordinates and slicing, and considering a range
of values for the semimajor axis and eccentricity of the initial matter distribution, and find that the final state
in all cases studied is a black hole plus gravitational radiation. Though initially distorted, the proper
circumferences of the apparent horizons that are found do not significantly exceed the hoop conjecture
bound. Configurations with a larger semimajor axis can produce strong gravitational radiation, with
luminosities up to PGW ∼ 2 × 10−3c5=G.
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Introduction.—Unhalted, gravitational collapse in
Einstein’s theory of general relativity will lead to the
formation of singularities where the theory breaks down.
Remarkably, it is conjectured that if one excludes regions
hidden from far away observers by black hole horizons,
Einstein’s theory generically retains its ability to predict the
evolution of spacetime. This behavior is referred to as
cosmic censorship [1]. (Here, we refer specifically to the
weak cosmic censorship conjecture.) Violations of cosmic
censorship have been shown to occur in the fine-tuned
configurations of critical collapse [2], as well as in space-
times with dimension higher than four [3–5]. However, for
more generic initial data in 3þ 1 dimensions, cosmic
censorship has shown to hold in the numerous cases where
it has been studied [6].
One possible exception to cosmic censorship is the work

of Shapiro and Teukolsky [7] following the collapse of
prolate configurations of collisionless particles. In that
work, one configuration was found to exhibit a blowup
in the spacetime curvature in two spindle regions lying
outside the collapsing matter, an indication this was not due
to just a shell crossing singularity in the matter. (A formal
statement of the cosmic censorship conjecture requires
some “suitability” condition be placed on the matter fields,
which could exclude singularities such as fluid shocks or
matter shell crossings that could occur even without gravity
[6]. Here, following Ref. [7], we consider collisionless
matter, which can develop caustics, but do not consider
such caustics as violations of cosmic censorship.) No
apparent horizon was found before the simulation became
unreliable and could no longer be evolved, and this, along
with the lack of turn around of null geodesics in the vicinity
of the blowup, was taken as evidence that this was a naked
singularity, in violation of cosmic censorship. However,

since the calculation could not be continued past the
blowup, the possibility of the spacetime containing an
event horizon that would hide the final stages of gravita-
tional collapse was not conclusively ruled out. In particular,
the absence of an apparent horizon in some gauge does
not rule out an event horizon. In fact, one can slice a
Schwarzschild spacetime in a way that approaches the
singularity without containing outer trapped surfaces [8].
The study of such prolate configurations as candidates

for violating cosmic censorship was motivated by Thorne’s
hoop conjecture [9]. Though lacking a precise formulation,
the hoop conjecture roughly states that a black hole will
form if and only if some mass M can be localized in a
region whose circumference in every direction satisfies
C ≲ 4πM. (Here and throughout we use geometric units
with G ¼ c ¼ 1.) For example, the collapse of an infinite
cylindrical distribution of matter will not a form a black
hole (but will form a singularity) [9]. The hoop conjecture
can be violated in the presence of negative energy, for
example, by cylindrical black holes in anti–de Sitter
spacetimes [10,11], or due to a scalar field with negative
potential [12], where arbitrarily elongated black holes can
be formed, but seems to be robust otherwise. Hence the
motivation to study the collapse of very prolate distribu-
tions of matter which (at least initially) lie outside the hoop
conjecture bound to form a black hole [13]. (See Ref. [14]
for an analytic proof of black hole formation in a spherical
symmetric collisionless matter configuration.)
Despite follow-up work by numerous authors, including

relaxing the requirement of axisymmetry and using higher
resolution [15,16], utilizing excision to the causal future of
the curvature blowup [17], and extending to 5 dimensional
spacetimes [18], the question of whether the configurations
studied in Ref. [7] violate cosmic censorship has remained
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unanswered. Here, we revisit the problem, using somewhat
different methods that allow us to rescue cosmic censorship
and determine the ultimate fate of such spacetimes. We
show that the final state is in fact a black hole with, in some
cases significant, gravitational radiation.
Methodology.—We consider the same family of initial

conditions as in Ref. [7], consisting of a prolate spheroidal
distribution of collisionless matter, initially at rest, that is
axisymmetric and has no angular momentum. This family
is parametrized by a semimajor axis length b (in units of the
total mass M), and eccentricity e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − a2=b2
p

(where a
is in the equatorial radius). In the Newtonian limit, the
spheriods have homogeneous density. At t ¼ 0, the spatial
metric is conformally flat γij ¼ Ψ4δij and the extrinsic
curvature is zero Kij ¼ 0. See Refs. [13,16] for further
details on the initial data.
In this work, we focus on very prolate cases. In Ref. [7],

the cases considered were e ¼ 0.9 with b=M ¼ 2 (prompt
collapse to a black hole) and b=M ¼ 10 (candidate for
cosmic censorship violation). Here we consider a number
of cases with e ¼ 0.9 and 2 ≤ b=M ≤ 20. We also consider
one case with larger eccentricity, namely, b=M ¼ 10 with
e ¼ 0.95.
We evolve the Einstein-Vlasov equations describing a

distribution of collisionless matter coupled to gravity using
the methods of Ref. [19] for evolving massive particles.
For gauge conditions at t ¼ 0, we choose the lapse to be
α ¼ Ψ−4 and the shift to be zero βi ¼ 0. However, we carry
out the initial part of the evolution in harmonic gauge.
Around the time of collapse, we transition to a damped
harmonic gauge [20,21] (specifically the p ¼ 1=4 version
used in Ref. [22]), which we find helps control the strong

oscillations in the coordinate shape of the black hole as it
settles down. In contrast, in Ref. [7], maximal slicing and
isotropic spatial coordinates were used.
We search for apparent horizons—outermost marginally

outer trapped surfaces—using a flow method [23]. Once
found, we track the evolution of the horizon, measuring
several properties including its area—from which a mass
MBH can be calculated—and its proper circumferences in the
polar and equatorial directions, Cp and Ceq. In the following,
we use black hole to refer to the apparent horizon, though
for all cases we track the apparent horizon to sufficiently late
times that it should become a good approximation for a
time slice of the event horizon. The gravitational radiation is
measured by calculating the Newman-Penrose scalar ψ4.
We also compute the Kretschmann scalar, obtained from
contracting the Riemann tensor with itself I ¼ RabcdRabcd,
as well as the matter density, computed from the stress-
energy tensor ρ ¼ −Ta

a.
We restrict to axisymmetry, which allows us to use a

computational domain with two spatial dimensions. Most
results presented below are obtained using N ¼ 1.6 × 106

particles and an adaptive mesh refinement simulation grid
where the finest resolution is dx ≈ 0.02M (for b=M ≤ 12
and e ≤ 0.9) or dx ≈ 0.01M (otherwise). For select cases,
we also perform resolution studies to establish convergence
using 0.75× and 1.5× the grid resolution, and 0.754× and
1.54× as many particles. Details on numerical convergence
can be found in the Supplemental Material [24].
Results.—Our main result is that we are able to evolve all

cases considered here until they settle towards a final state,
which we find to be a black hole containing all the matter,
along with gravitational radiation. Configurations with
smaller values of b (or larger values of eccentricity, in
the case with e ¼ 0.95) form black holes more promptly,
while those with larger values take longer to collapse—
both perpendicular to the symmetry axis, and along the
symmetry axis. In Fig. 1, we show the polar and equatorial
circumferences of the apparent horizon, beginning when

FIG. 1. The polar (solid lines) and equatorial (dashed lines)
proper circumferences of the apparent horizons found for various
values of the semimajor axis length b (in units of the total mass).
The circumference is normalized by 4πMBH, where MBH is the
mass of the apparent horizon, to indicate the relation to the hoop
conjecture bound. All curves are for initial data with e ¼ 0.9,
except for the dotted (orange) curves which correspond to
e ¼ 0.95 and b ¼ 10.

FIG. 2. The gravitational wave power as a function of time for
cases with various values of the semimajor axis and e ¼ 0.9.
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one is first found, for a number of cases. The matter
configuration has collapsed sufficiently that the values are
not more than ∼25% above 4πMBH, and thus not in serious
violation of the approximate inequality of the hoop con-
jecture. (Though we note that, since our horizon finding
algorithm relies on having a sufficiently good guess for the
shape, we cannot exclude the existence of a more distorted
horizon at earlier times.) After formation, the horizons then
exhibit damped oscillations between being prolate and
oblate as they ring down towards a stationary state.
All the matter ends up in the black hole for every case

studied here. However, a non-negligible amount of energy
is radiated away in gravitational radiation. In Fig. 2, we

show the gravitational wave power for select cases.
The power peaks around the time of black hole
formation—reaching as high as PGW ∼ 0.002 in some
cases—and then dies away exponentially, again showing
the characteristic quasinormal mode ringing.
We also show the total energy in gravitational radiation

as function of the semimajor axis length in Fig. 3. Cases
with smaller values of b=M are already close to being black
holes at the initial time and do not emit significant
radiation. For e ¼ 0.9, this is maximized at b=M∼
12–14, with EGW ∼ 0.015M. A similar amount of energy
is radiated for b ¼ 10 and e ¼ 0.95. The difference from
the total mass M − EGW matches the measured mass of the
black hole at late times to better than 0.2% for all cases.
The amount of gravitational radiation is significant for an

FIG. 4. The maximum value of the particle density (dashed
lines) and jIj1=2 (solid lines) as a function of time (both in units of
1=M2), for b=M ¼ 10 and e ¼ 0.9 and three different resolu-
tions. At around t=M ¼ 30 an apparent horizon is found, the
interior of which is excluded from this calculation.

FIG. 3. The total energy emitted in gravitational waves as a
function of the semimajor axis b. The energy is predominately
due to an l ¼ 2 component, but we also show the amount in the
l ¼ 4 and l ¼ 6 components, scaled up by a factor of 10 to be
visible on the graph. The points connected by lines correspond to
e ¼ 0.9, while the two unconnected points above correspond to
e ¼ 0.95.

FIG. 5. Snapshots of the particle density (left half) and
jIj1=2=ð8πÞ (right half), at the approximate times when a
caustic first forms (top) and when an apparent horizon is first
found (indicated by the gray curve; bottom) for b=M ¼ 10 and
e ¼ 0.9. The color scale is logarithmic from 2 × 10−4 to 2 in
units of 1=M2. The dashed white curve in the bottom panel
represents the position of a set of null geodesics spreading out
in all directions from the point of maximum density and
curvature in the top panel.
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axisymmetric spacetime. For comparison, an equal mass
head-on collision of two black holes falling from rest
releases 0.06% in gravitational radiation [25], while an
ultrarelativistic collision releases 15% of the total mass
in gravitational waves, and has a peak luminosity of
PGW ∼ 0.01 [22,26].
Most of the gravitational wave energy is due to the l ¼ 2

angular component, but in Fig. 3, we also show the
subdominant contributions from the l ¼ 4 and 6 compo-
nents. (The odd l components are suppressed by the
symmetry of the initial data, though we do not explicitly
enforce the equatorial symmetry in the placement of
particles, nor during evolution.)
Focusing on the b=M ¼ 10, e ¼ 0.9 case considered in

Ref. [7], we also find a blowup in the curvature around the
same time. As shown in Fig. 4, the maximum value
obtained at blowup increases with resolution. However,
in contrast to Ref. [7], we find that the maximum in I
always occur in a region where the matter density is
nonzero (this was also found in Ref. [16]), and in fact
tracks the blowup in density, as shown in Fig. 4. This
indicates that this is just due to the development of caustics
in the matter (see, e.g., Ref. [27]).
This is further illustrated in Fig. 5 where we show

snapshots of both the matter density and curvature. By
integrating null geodesics outward from the caustic to the
wave zone, we have explicitly checked that the caustic is
“visible” at null infinity. We are able to continue the
calculation past the formation of the caustic (which is
mild, e.g., compared to the singularity associated with
trapped surfaces). The matter continues rapidly collapsing,
and a short time later an apparent horizon is found which
envelops all the matter and the region of higher curvature.
The curvature outside quickly approaches the value of an
isolated black hole.
Conclusion.—We have followed the relativistic collapse

of very prolate spheroidal configurations of matter, revisit-
ing a scenario originally studied in Ref. [7], and put forth as
evidence against cosmic censorship. With our different
choice of slicing and coordinates, we do not find a blowup
of curvature peaked outside the matter region as in Ref. [7],
and we are able to follow the evolution through to the
asymptotic end state. We see that a black hole does form,
swallowing the matter, and censoring the interior singularity.
The original motivation for investigating this scenario for

possible violations of cosmic censorship was that it
seemingly pitted the hoop conjecture, which dictates that
sufficiently elongated matter configurations should not
form black hole horizons, against the generic tendency
of unhalted relativistic collapse to form singularities. We
find here that the spacetime dynamics unfolds in such a way
that, even in the case of collisionless particles, the matter
collapses to where it can be surrounded by a horizon that is
not too elongated. Thus, neither the hoop conjecture, nor
cosmic censorship appear to be violated. This rapid and

violent collapse does, however, leave its imprint in the
strong gravitational radiation, which for some cases is
comparable to a quasicircular binary black hole merger in
peak luminosity and the fraction of the total mass of the
spacetime.
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