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Planned cryogenic gravitational-wave detectors will require improved coatings with a strain thermal
noise reduced by a factor of 25 compared to Advanced LIGO. We present investigations of HfO2 doped
with SiO2 as a new coating material for future detectors. Our measurements show an extinction coefficient
of k ¼ 6 × 10−6 and a mechanical loss of ϕ ¼ 3.8 × 10−4 at 10 K, which is a factor of 2 below that of SiO2,
the currently used low refractive-index coating material. These properties make HfO2 doped with SiO2

ideally suited as a low-index partner material for use with a-Si in the lower part of a multimaterial
coating. Based on these results, we present a multimaterial coating design which, for the first time, can
simultaneously meet the strict requirements on optical absorption and thermal noise of the cryogenic
Einstein Telescope.
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Introduction.—During the first two observing periods of
advanced interferometric gravitational-wave detectors, ten
gravitational-wave signals from binary black hole mergers
and one from a binary neutron star inspiral have been
measured [1–6]. To improve upon the sensitivity of the
current generation of detectors, Advanced LIGO [7,8] and
Advanced Virgo [9], it is essential to reduce coating
thermal noise (CTN). The CTN amplitude spectral density
is proportional to the square root of the mirror temperature
[10]. Therefore, gravitational-wave detectors such as
KAGRA [11,12] and the low frequency detector of the
planned Einstein Telescope (ET-LF) [13] will operate at
low temperatures. At frequencies of around 10 Hz, ET-LF
will be 100 times more sensitive than Advanced LIGO and
Virgo at the same frequency. This improved sensitivity will
increase the observable volume of space by a factor of 1003

and open up the 1–10 Hz frequency band. This may allow
multiple detections of known young pulsars [14], first
detections of a Galactic type Ia supernova [15], and many
distant—and possibly new types of—sources. The expan-
sion of the frequency range will also allow inspirals to be
observed for a longer time before the final merger events.
The interferometer mirror coatings are made of alternat-

ing layers of materials with low and high refractive index n.
In the simplest case, the layers are a quarter of a wavelength
(QWL) in optical thickness (n multiplied by the geometric
thickness t). To avoid thermal deformation of the mirrors
and to maintain the desired cryogenic temperature, heating
must be minimized. Therefore, in addition to low CTN, low
optical absorption at the ppm (10−6) level is required.

SiO2 and Ta2O5 (or Ta2O5 doped with TiO2 [16]),
deposited using ion-beam sputtering (IBS), are widely used
coating materials with very low absorption and scattering
[17]. A complication of cooling is that CTN is proportional
to the square root of the mechanical loss, which is
temperature dependent. Both SiO2 and Ta2O5 (doped or
undoped) show mechanical-loss peaks at low temperatures
[18–20]. There is some uncertainty if these peaks are
present in multilayer coatings formed from these materials
[21,22]. However, it is clear that the mechanical loss is too
high to meet the sensitivity requirements of ET-LF.
Another complication is that fused silica, the currently

used mirror substrate material, is not suitable for low
temperature operation due to a large peak in mechanical
loss at around 40 K [23–25]. For ET-LF, the use of
crystalline silicon (c-Si) is planned [13]—the material is
also used for the mechanical spacer (at 124 K) in stable
reference cavities for optical frequency standards [26]. c-Si
is not transparent at 1064 nm. Therefore, a change to a
longer laser wavelength is required [27], with 1550 nm
planned for ET-LF.
Amorphous silicon (a-Si) is a very interesting coating

material due to low mechanical loss at low temperatures
[28,29]. Currently, the best estimated absorption for a highly
reflective multilayer a-Si=SiO2 coating is 7.6 ppm at
1550 nm and room temperature (ka−Si ¼ 1.22 × 10−5)
[30]. There is also potential for further reduction at a higher
wavelength and a lower temperature [31,32]. To obtain the
minimum optical absorption in a-Si, heat treatment at
400 °C is required. Thus a low-index partner material also

PHYSICAL REVIEW LETTERS 122, 231102 (2019)
Editors' Suggestion Featured in Physics

0031-9007=19=122(23)=231102(6) 231102-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.122.231102&domain=pdf&date_stamp=2019-06-13
https://doi.org/10.1103/PhysRevLett.122.231102
https://doi.org/10.1103/PhysRevLett.122.231102
https://doi.org/10.1103/PhysRevLett.122.231102
https://doi.org/10.1103/PhysRevLett.122.231102


must have good optical properties and mechanical loss at
this heat-treatment temperature.
Using a-Si (instead of Ta2O5) in a highly reflective

coating with SiO2 would significantly decrease CTN at
low temperatures. However, this decrease is limited by the
mechanical loss of the SiO2 layers. To meet the ET-LF
requirements, it is therefore essential to find an alternative
low-index material for combination with a-Si.
This Letter presents IBS HfO2 doped with SiO2

(SiO2∶HfO2) as a low-index material for ET-LF coatings.
HfO2 films have been observed to be partially polycrystal-
line, with the degree of crystallinity increasing upon heat
treatment. This polycrystalline structure causes a problem-
atically high level of optical scattering [33]. However, HfO2

shows lower mechanical loss [33] than SiO2. Doping HfO2

with SiO2 has been shown to stabilize the coating against
crystallization following heat treatment at temperatures up
to 550 °C [34,35]. We show that SiO2∶HfO2 used with a-Si
can meet the optical absorption requirements (<5 ppm) and
the CTN requirements of ET-LF at an operating temper-
ature of 10 K [13] when used together with SiO2 and Ta2O5

in a multimaterial design [36,37].
Deposition and heat treatment.—Coating mechanical

loss was measured with a ringdown technique as described
in Ref. [18] using cantilevers coated with a HfO2 layer
doped with 27% SiO2 (measured by x-ray photoelectron
spectroscopy). The coatings were deposited by CSIRO [38]
using IBS. Ellipsometry was used to estimate the thickness
of the as-deposited coating to be ð483� 3Þ nm. The
cantilevers were made of c-Si, which has low mechanical
loss below 150 K [39,40], to maximize the sensitivity to the
coating loss. Prior to coating deposition, an oxide layer
(SiO2) was grown on the cantilevers by thermal oxidation,
to ensure good adhesion of the coating. The oxide layer was
approximately 20 nm thick, which was also measured via
ellipsometry.
Optical coatings are commonly heat treated to reduce the

stress and optical absorption [41]. Coating mechanical loss
is also often strongly dependent on heat treatment [19].
Therefore, the coated cantilevers were heat treated for
24 h at temperatures of 150 °C, 300 °C, 400 °C, and 600 °C
by CSIRO to cover the typical temperature span used
by commercial vendors. There is some evidence in the
literature of the growth of a few nanometers of oxide due to
heat treatment for HfO2 films on c-Si [42], although it
should be noted that this is predicted to occur at higher
temperatures than are used here. Our ellipsometry mea-
surements showed no significant variation in thickness of
the SiO2-doped HfO2 coating due heat treatment. For the
oxide layer, there was no evidence of a significant increase
in thickness after heat treatment at 400 °C—the temperature
used for the mechanical-loss results presented here. For
heat treatment at 600 °C, a maximum possible increase in
oxide thickness of 6 nm was estimated. It should be noted

that variations of up to 3 nm were observed for samples
with identical heat treatment.
Transmission electron microscope measurements of

coatings deposited on SiO2 substrates indicated that all
of the heat-treated coatings remained amorphous (see
Fig. 1). This keeps optical scattering low and makes
SiO2 (SiO2∶HfO2) potentially useful as a coating material
for gravitational-wave detectors.
Mechanical loss and Young’s modulus.—The Young’s

modulus, Y, of the coating is required for calculation
of the coating mechanical loss [43]. For SiO2∶HfO2,
Y ¼ 180 GPa was calculated [44] using the moduli of
both SiO2 and HfO2 (see Table I).
The mechanical losses of several bending modes in the

frequency range 0.5 to 9.5 kHz were measured between
10 and 200 K. After a complete measurement cycle, the
cantilever was reclamped and the measurements repeated.
This ensures that unintentional variations in the clamping
procedure did not affect the results. The mechanical loss
of the coatings was calculated by comparing the mechanical
loss of the coated c-Si cantilevers with nominally identical
oxidized, uncoated samples using Ref. [43]. Underesti-
mating the oxide thickness of the heat-treated, coated
samples would result in a small overestimation of the

FIG. 1. Electron diffraction pattern of the 600 °C heat-treated
silica-doped hafnia coating showing the coating to still be
amorphous. This pattern is representative of those measured at
lower heat-treatment temperatures.

TABLE I. Material properties used for CTN calculations. The
heat-treatment temperature for the losses (ϕ) was 450 °C for SiO2

and 400 °C for all other materials, with loss values at 600 °C in
brackets.

Material ϕð×10−4Þ 10 K n k (×10−5) Y (GPa)

SiO2 8.5 (5) [45] 1.44 [46] 0.008a 72 [47]
HfO2 220 [48]
SiO2∶HfO2 3.8� 0.3 1.91 [49] 0.40� 0.09 180 [49]
Ta2O5 5 (7) [19] 2.05 [50] 0.008a 140 [47]
a-Si ≤ 0.17b [30] 3.48 [51] 1.22�0.21 [30] 147 [48]
aEffective k chosen for αHR ≤ 0.5 ppm. This assumes that the
effective k value for the stack at 1550 nm is identical to 1064 nm
[52] so that the absorption scales just with layer thickness.
bMeasured only measured at room temperature.
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coating loss. For 400 °C heat treatment, there was no
evidence of oxide growth. (For the possible 6 nm oxide
growth at 600 °C, the coating loss would change by ≈1%.)
Good agreement was obtained between the measured

coating loss for each bending mode. Figure 2 shows a
representative data series at a mode frequency of 1.4 kHz.
The data shown are for heat treatment at 400 °C which is the
optimum temperature for minimizing the absorption in the
high-index a-Si layers in a highly reflective coating stack.
Below 40 K, the loss of the SiO2∶HfO2 heat treated at

400 °C is significantly lower than the loss of IBS SiO2

(heat treated at 300 °C and 450 °C), as shown in Fig. 2.
SiO2∶HfO2 heat treated at 400 °C therefore has great
potential as a low thermal-noise replacement for SiO2

coating layers.
Optical absorption.—Fused silica disks were coated

with SiO2∶HfO2 in the same coating run as the cantilevers
used for mechanical-loss studies. The absorption of the
coatings was measured at 1550 nm using photothermal
common-path interferometry [53]—a technique based on
measuring a thermal effect due to optical absorption. The
absorption of the as-deposited coating was found to be
ð25� 5Þ ppm for a 500 nm thick layer. The error
originates from variations in absorption across the sample
and from reproducibility after realignment. This absorp-
tion corresponds to an extinction coefficient of k ¼
ð6.4� 1.3Þ × 10−6. The absorption coefficient of a coat-
ing layer, α, is related to the extinction coefficient, k, by
α ¼ 4πk=λ. The total absorption of an highly reflective
(HR) coating, αHR, also includes the effect of interference
in the layers. After heat treatment at 400 °C, which is the
optimum temperature for mechanical loss, the absorption
reduces to ð16�3Þppm [k ¼ ð4.0� 0.9Þ × 10−6].
Discussion.—Figure 3 shows the total strain noise of

the Advanced LIGO detectors (gray dashed curve) at their
design sensitivity. The black solid curve represents the total

strain noise of the ET-LF design [13]. This strain noise can
be converted into displacement noise by multiplying by the
detector arm length (4 km for aLIGO, 10 km for ET-LF),
allowing comparison between detectors to be unbiased by
differing arm lengths. The coating displacement thermal
noise of the whole detector, CTND, includes contributions
from the two input test masses (ITMs) and the two end test
masses (ETMs) forming the interferometer arm cavities:

CTND ¼ ð2 × CTN2
ETM þ 2 × CTN2

ITMÞ1=2: ð1Þ

The CTND requirement for ET-LF is ≈3.6×10−21 m=
ffiffiffiffiffiffi

Hz
p

at a reference frequency of 10 Hz (shown in terms of
strain noise by the red solid line)—this is about a factor
of 25 below the CTND of Advanced LIGO (blue dashed
line) [7].
The Einstein Telescope design study suggests an oper-

ation temperature of 10 K, with the optical absorption of the
coating required to be ≤ 5 ppm [13]. The design trans-
mission of the ETMs is T ≈ 6 ppm, and of the ITMs T ≈
7000 ppm [13]. For the coating materials used in current
gravitational-wave detectors, SiO2 and Ta2O5, CTND
would be ≈6.45 × 10−21 m=

ffiffiffiffiffiffi

Hz
p

at 10 Hz and 10 K
[see Table II(a)], calculated using Ref. [10]. Table II also
shows CTN for the ETMs and ITMs separately. For the
ITMs, CTN is lower, as fewer layers are required to provide
the lower design reflectivity.
Coating (b) in Table II demonstrates the potential of using

SiO2∶HfO2 as a low-index material alongside a-Si. Based
on the results presented here, this combination of materials
results in a CTND ¼ 2.4 × 10−21 m=

ffiffiffiffiffiffi

Hz
p

at 10 K. This
surpasses the requirement for ET-LF. However, the absorp-
tion of this coating, of ≈ð11.9� 2.3Þ ppm at 1550 nm,
exceeds the required value by more than a factor of 2.
A way to further reduce the absorption is the use

of a multimaterial design [36,37]. In this design, a few

FIG. 2. Temperature dependent coating mechanical loss of
SiO2∶HfO2 heat treated at 400 °C (black circles) measured on
a resonant mode at 1.4 kHz. Also shown is the mechanical loss of
an IBS SiO2 coating at different heat-treatment temperatures [45].
The dashed vertical line marks a temperature of 10 K.

FIG. 3. Design sensitivity (gray dashed curve) and CTND (blue
dashed line) of Advanced LIGO and design sensitivity (black
curve) and CTND (red line) of ET-LF. The green dotted line
shows CTND of our coating [coating (c) in Table II] at a mirror
temperature of 10 K.
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low-absorbing layers are used on top of the coating to
reduce the laser power reaching the lower, higher-absorbing
layers. In our case, two bilayers of SiO2 and Ta2O5 reduce
the light intensity enough for the absorption to be within the
ET-LF requirement. This absorption reduction comes at
the expense of a slight increase in CTND, which still
meets the requirement [3.6 × 10−21 m=

ffiffiffiffiffiffi

Hz
p

at 10 K; see
Table II(c)]. The exact layer design and the light intensity
inside the coatings is shown in Fig. 4(a) for the ETMs, and
in Fig. 4(b) for the ITMs. The thickness of the layer of
SiO2∶HfO2 closest to the substrate has been adjusted to be
0.2 QWL thick, allowing the transmission requirement for
the ET-LF ITM mirror to be matched more closely. This
coating design therefore meets the ET-LF requirements on
thermal noise and optical absorption. The total CTND strain
noise for these coatings is shown by the green dotted line in
Fig. 3. For this coating, heat treatment at 400 °C was
assumed to minimize the optical absorption of the a-Si
layers, which increases the mechanical loss of SiO2 and
Ta2O5 compared to coating (a) (see Table I).
Note that this coating design is a suggestion for how to

use SiO2∶HfO2 calculated based on measurements results
of single layers of the different materials. An actual highly
reflective multilayer coating is yet to be produced and
verified.

Conclusion.—We have shown 30% SiO2∶HfO2 to be an
excellent low-index material for use in highly reflective
mirror coatings together with a-Si. Unlike pure HfO2,
SiO2∶HfO2 is stable against crystallization for heat treat-
ment up to 600 °C, which prevents excess scattering—
essential for materials to be suitable for gravitational-wave
detectors. The mechanical loss of SiO2∶HfO2 at a temper-
ature of 10 K is significantly lower than observed for pure
SiO2. After heat treatment at 400 °C, which is the optimum
temperature to minimize the optical absorption of a-Si, the
mechanical loss of SiO2∶HfO2 is more than a factor of 2
below that of SiO2.
A multimaterial coating made of a-Si and SiO2∶HfO2,

with two bilayers of SiO2 and Ta2O5 on top, has been
demonstrated to fully meet the requirements of ET-LF on
CTND [54], and on optical absorption for the first time.
There are many other challenges to be overcome to

realize the cryogenic Einstein Telescope, but this coating
design is an important step towards the detector being
able to meet its goal of a factor of 100 improvement in
sensitivity over aLIGO at frequencies around 10 Hz.
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