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We investigate the fluctuations of the time elapsed until the electric charge transferred through a
conductor reaches a given threshold value. For this purpose, we measure the distribution of the first-passage
times for the net number of electrons transferred between two metallic islands in the Coulomb blockade
regime. Our experimental results are in excellent agreement with numerical calculations based on a recent
theory describing the exact first-passage-time distributions for any nonequilibrium stationary Markov
process. We also derive a simple analytical approximation for the first-passage-time distribution, which
takes into account the non-Gaussian statistics of the electron transport, and show that it describes the
experimental distributions with high accuracy. This universal approximation describes a wide class of
stochastic processes, and can be used beyond the context of mesoscopic charge transport. In addition, we
verify experimentally a fluctuation relation between the first-passage-time distributions for positive and
negative thresholds.
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Introduction.—The first-passage time is the time it takes a
stochastic process to first reach a certain threshold. First-
passage-time distributions have been studied in the context
of Brownian motion [1–6], biochemistry [7–12], astrophys-
ics [13,14], decision theory [15–17], searching problems
[18,19], finance [20,21], and thermodynamics [17,22–27].
For example, in finance, the statistics of first-passage times
is used in credit risk modeling, and in astrophysics, the
distribution of times required for a star in a globular cluster to
reach the escapevelocity can be used to estimate the cluster’s
lifetime [13]. In the context of mesoscopic electron trans-
port, the interest in the distributions of first-passage times
and waiting times [28,29] has been inspired by the tremen-
dous progress in nanotechnology allowing very precise
single-electron counting experiments [30–33]. Despite
progress in the theory, no experimental study of the statistics
of the time elapsed until the electric charge transferred
through a conductor reaches a certain threshold has been
reported so far.
The fluctuations of a stochastic process NðtÞ are usually

described in terms of the distribution PtðNÞ for the process
to take the valueN at a fixed time t. An alternative approach
is to study the first-passage-time probability distribution
PNðtÞ for a stochastic process to first reach a given value N
at time t. Recently, theories of the first-passage-time
probability in Markovian systems have been developed
[22,23]. They provide the first-passage-time probabilities
for the net number of jumps between any two states of the
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FIG. 1. Experimental setup. (a) Scanning electron micrograph
of the double dot structure. A dc bias voltage Vb ¼ 90 μV is
applied to the sample. One of the islands is made of normal metal
(N, green), and the other one is superconducting (S, cyan).
(b) Top panel: output currents of the detector SETs coupled to the
left (IL) and right (IR) islands. Bottom panel: time resolved
trajectory of the charge states of the system ðNL;NRÞ, with
NL;R ¼ 0 or 1 indicating, respectively, the absence or the
presence of an extra electron in the corresponding island.
(c) A schematic sketch of the double dot. The arrows show all
possible transitions of electrons (black circles) in each charge
state. The system is an example of an asymmetric simple
exclusion process (ASEP) with two sites and open boundaries.
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system. It has also been shown that first-passage-time
distributions of currents [25,26,34] and stopping-time
distributions of entropy production [17,24] satisfy universal
laws for nonequilibrium steady-states obeying generalized
detailed balance conditions. For such systems, the distri-
butions for the first time to produce and reduce entropy by a
given amount have the same shape [17,24]. This first-
passage-time fluctuation relation was generalized to sto-
chastic processes describing accumulation of evidence
during sequential decision making [35,36]. As a result,
the first-passage-time distribution for one-dimensional
biased random walk obeys, similarly to a Brownian particle
[1,2], the relation PNðtÞ ¼ P−NðtÞevN=D, with v and D
being the drift and diffusion coefficients in a lattice of unit
spacing [17].
In this Letter, we report an experimental study of the first-

passage-time statistics for electrons transferred through a
metallic double dot in the Coulomb-blockade regime. For
this purpose, we obtain the full time record of millions of
electron tunneling events between its two metallic islands
(see Ref. [37] for details). Subsequently, we compute the
first-passage-time distributions for the net number of elec-
trons to reach a certain threshold. We find an excellent
agreement with numerical calculations based on an exact
theory [22,23]. We derive and experimentally verify a
simple and universal analytical expression for the distribu-
tion PNðtÞ. It depends on only three parameters—the first
three cumulants of the transferred charge distributionPtðNÞ
and can be used to describe the first-passage-time fluctua-
tions of a wide class of non-Gaussian stochastic processes.
Finally, we test the first-passage-time fluctuation relation
closely related to the fluctuation theorem for electron
transport [38–43].
Experiment.—Our metallic double dot contains alumi-

num superconducting parts together with normal parts
made of copper, see Fig. 1(a). The left lead and the right
island are superconducting, while the left island and the
right lead are normal. Thus, all three tunnel junctions
connect a superconductor with a normal metal. The double
dot has high normal state resistance of 55 MΩ. We run the
experiment at the base temperature of 50 mK in the strong
Coulomb blockade regime, where tunneling rates of elec-
trons are very low, below 1 kHz. We monitor the direction
of electron jumps using single-electron transistors (SETs)
capacitively coupled to the islands.
The top panel of Fig. 1(b) shows time traces of electric

currents of the two SETs. At chosen values of the gate
potentials and at bias voltage Vb ¼ 90 μV applied to the
device there exists four populated charge states ðNL;NRÞ,
where NL;R ¼ 0 or 1 indicate the number of extra electrons
in the islands. Monitoring the currents of both SETs, we
detect the transitions between these states and find the
corresponding transition rates. An example of a trajectory
showing such transitions is shown in the bottom panel of
Fig. 1(b). Figure 1(c) shows all possible transitions from

every charge state [44]. The Markovian stochastic dynam-
ics of the double dot is an example of an asymmetric simple
exclusion process (ASEP) with two sites and open boun-
daries [45–49].
Since we have full information about the population of

the islands at any time, we can monitor the transitions
between all charge states. Here we are interested in electron
tunneling events through the middle junction indicated by
black arrows in Fig. 2(a). In Fig. 2(b), we plot three
exemplary time traces of the net number of transmitted
electrons NðtÞ. Next, we look at the first-passage times ti at
which the traces NðtÞ cross a chosen threshold N, where i
indicates different realizations of the experiment. The
empirical distributions of these times for several values
of the threshold PNðtÞ are shown in Fig. 3. They constitute
our main experimental result.
Theory.—First, we numerically calculate [50] first-pas-

sage-time distributions using an exact theory [22,23].
Experimentally determined transition rates between the
charge states of the double dot, given in the caption of
Fig. 2, are used as input parameters for the calculations. The
results, shown by solid lines in Fig. 3, are in perfect
agreement with the experiment, which confirms the con-
sistency of our analysis.
Next, we propose a simple analytical expression for the

first-passage-time distribution, which accounts for the non-
Gaussian statistics of the electron transport via the third
cumulant of the distribution PtðNÞ. The cumulants of
PtðNÞ are defined as Cn ¼ ð−iÞn∂nF ð χÞ=∂ χnj χ¼0 [55],
where F ðχÞ¼ limt→∞t−1 ln½

P
Ne

iNχPtðNÞ� is the cumulant
generating function (CGF). In fact, if the observation time t

(a) (b)

FIG. 2. Transition rates and first-passage times. (a) Depiction of
the Markovian dynamics of the double dot system. The transition
rates Γm

n from the state n to the state m have the following values:
Γ01
00 ¼ 644, Γ00

01 ¼ 131, Γ10
00 ¼ 52, Γ00

10 ¼ 39, Γ11
01 ¼ 41, Γ01

11 ¼ 43,
Γ11
10 ¼ 167, Γ10

11 ¼ 53, Γ10
01 ¼ 25, and Γ01

10 ¼ 30 Hz. We monitor
the transitions between the states (1,0) and (0,1) shown by black
arrows. (b) Black lines are time traces of the net number of
electrons transferred through the middle junction from the right to
the left island NðtÞ, horizontal dotted line indicates the threshold
N ¼ 10. First passage times are marked by red circles, and their
distribution PNðtÞ is illustrated by the red shaded area. Vertical
blue line indicates the time t for which the distribution of the
number of transferred electrons PtðNÞ is shown (blue shaded
area, illustration).
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exceeds the time τr required for the system to relax to the
steady state after a perturbation, the CGF becomes time
independent. Thus, at t≳ τr one finds

PtðNÞ ¼
Z

π

−π

d χ
2π

e−iN χetF ð χÞ: ð1Þ

One can expand the CGF in i χ,

F ð χÞ ¼ iC1 χ − C2 χ2=2 − iC3 χ3=6þ � � � ; ð2Þ

where F ð0Þ ¼ 0 since the distribution PtðNÞ is normal-
ized. At t ≫ C3jNj=3C22, PtðNÞ becomes Gaussian since
the last term ∼ χ3 can be ignored. At shorter times this
term results in a non-Gaussian PtðNÞ, which does not
have a simple analytical form. Therefore, we use
another form of CGF allowing an analytical treatment.
It models an asymmetric random walk with the step
size α [3,51] or hopping of charged particles through a
junction [52],

F arwð χÞ ¼ Γþðeiα χ − 1Þ þ Γ−ðe−iα χ − 1Þ: ð3Þ

We adjust the rates Γ� and the effective particle charge α
in such a way that Taylor expansions of the functions (2)
and (3) coincide up to the third order terms ∼ χ3. Next,
we solve the integral (1) using Eq. (3), and find
the first-passage-time distribution PNðtÞ from the
equation [53] PtðNÞ¼R

t
0dt

0PNðt0ÞPt−t0 ð0Þ (see Ref. [50]
for details). Thus, we arrive at a simple analytical
approximation,

PNðtÞ ≃
jN�je−

C1C2
C3

t

t

�
C2 þ

ffiffiffiffiffiffiffiffiffiffi
C1C3

p
C2 −

ffiffiffiffiffiffiffiffiffiffi
C1C3

p
�N�

2

× IjN�j

�
C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C22 − C1C3

p
C3

t

�
; ð4Þ

having the same structure as the random walk result (7). In
this expression, InðxÞ is the modified Bessel function of
the first kind, and N� ¼ ½N ffiffiffiffiffiffiffiffiffiffiffiffi

C1=C3
p � is the threshold value

for the number of virtual particles such that the charge
transmitted by them, αN�, with α ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

C3=C1
p

, gets as close
as possible to the net charge of real electrons N. Here the
square brackets ½…� denote the rounding function. We
have also assumed that C1; C3 > 0, and C22 > C1C3. The
approximation (4) is valid if the conditions

C1jC1C4−C2C3j
12C32

�
N
C1t

−1

�
2≲1; t≫ τr; jNj≫ 1 ð5Þ

are fulfilled [50]. The first condition implies that the
approximation (4) works in the vicinity of the maximum
of the distribution PNðtÞ, occurring close to t ¼ N=C1, but
may fail in the tails of the distribution. At short times
the expression (4) behaves as tjN�j−1. Provided that
jC3 − C1j ≲ C1, it reproduces the scaling of the exact
distribution PNðtÞ ∼ tjNj−1 for small values of N. In this
case the last of the conditions (5) may be relaxed. In the
long time limit Eq. (4) correctly reproduces the exponen-
tial decay of PNðtÞ predicted by the exact theory [22], but
may provide an inaccurate decay rate if the first of the
conditions (5) is violated. Next, in the Gaussian limit
C3 → 0 the distribution (4) reduces to the form

(a) (b)

FIG. 3. First-passage-time distribution for positive (a) and negative (b) values of the threshold N. Different colors correspond to
different values of the threshold indicated in the figure. Symbols are experimental data, solid lines—numerics based on the exact theory
[22], dashed lines—Eq. (4). Shaded area approximately indicates the violation of the condition (5).
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PNðtÞ ¼
jNje−

ðN−C1tÞ2
2C2tffiffiffiffiffiffiffiffiffiffi

2πC2
p

t3=2
; ð6Þ

well known from the theory of Brownian motion [1,2], and
for C3 ¼ C1 Eq. (4) gives the random walk result [3,51]

Parw
N ðtÞ ¼ jNj

t
e−ðΓþþΓ−Þt

�
Γþ
Γ−

�N
2

INð2
ffiffiffiffiffiffiffiffiffiffiffi
ΓþΓ−

p
tÞ; ð7Þ

with Γ� ¼ ðC2 � C1Þ=2. We also note that the total
probability of reaching a given threshold AN ¼R∞
0 dtPNðtÞ is equal to 1 for N > 0 and is less than 1
for N < 0.
The approximate distribution (4) satisfies the fluctuation

relation

PNðtÞ
P−NðtÞ

¼ AN

A−N
¼

�
C2 þ

ffiffiffiffiffiffiffiffiffiffi
C1C3

p
C2 −

ffiffiffiffiffiffiffiffiffiffi
C1C3

p
�½N

ffiffiffiffiffiffiffiffiffi
C1=C3

p
�
; ð8Þ

which does not require the system to be in equilibrium or to
exhibit detailed balance, and relies only on the conditions
(5). In the limit t ≫ τr, and provided the system has a well-
defined temperature T, one can also prove an exact
fluctuation relation [10,11,17,23,36,56],

PNðtÞ=P−NðtÞ ¼ exp½NeVb=kBT�; ð9Þ

which is a consequence [50] of the fluctuation theorem
for the electron transport [38–41] and remains valid for
quantum conductors described by the Schrödinger equa-
tion. Equations (8) and (9) are close in the common range
of validity. They become equivalent, e.g., for a Gaussian
equilibrium stochastic process describing charge transport
through an Ohmic resistor, in which case C2¼2kBTC1=eVb
and C3 → 0, and for a biased tunnel junction, for which
C3 ¼ C1 and C2 ¼ C1 coth½eVb=2kBT�.
Discussion.—We have determined the transition rates

between the charge states of the double dot, given in the
caption of Fig. 2, in the usual way by counting the number
of corresponding transitions. The numerical calculations
based on the exact theory [22,23] with these rates agree
with the experiment very well, see Fig. 3.
Next, we test the approximate expression (4).

Having determined the rates, we have used the full
counting statistics formalism [54,57] and found the first
four cumulants of the charge distribution, C1 ¼ 4.60,
C2 ¼ 9.27, C3 ¼ 2.18, C4 ¼ 3.96 Hz. As a consistency
check, we have also determined the cumulants directly
from the measured distributions of the number of trans-
mitted electrons PtðNÞ, and obtained the same values
within �0.2 Hz, which is compatible within the statistical
uncertainty. The system relaxation time is given by the
inverse of the eigenvalue of the transition rates matrix,
which has the real part closest to zero among its nonzero

eigenvalues, and equals τr ¼ 8.7 ms [58]. With these
values of the cumulants the first of the conditions (5) is
fulfilled at t → ∞ and the expression (4) fits the exper-
imental data very well in the long time limit, see Fig. 3. The
first two of the conditions (5) are violated in the shaded
areas of Figs. 3(a), 3(b). We find that Eq. (4) fits the
experimental data rather well outside these areas even for
small values of the threshold jNj ¼ 1, 2, which is explained
by the relatively small difference between the cumulants C1
and C3. We have found that at another value of the bias
voltage, at which the difference between C1 and C3 is
bigger, Eq. (4) has worked only for sufficiently large
jNj [50].
We have also tested the fluctuation relation (8) by

comparing it to the experimental data and to the numerics
based on the exact theory [22,23]. The result of this
comparison is shown in Fig. 4. We have again found that
the numerics provides a very accurate match with the data.
The approximation (8), although less accurate, also
describes the experiment rather well. The exact numerical
analysis reveals the approximate nature of the fluctuation
relations (8), (9) for nonequilibrium systems with broken
detailed balance, like our double dot. Indeed, the solid lines
in Fig. 4, showing the exact results, slightly deviate from
constant values. We also note that our double dot is suitable
for testing the fluctuation relations for Markovian systems
with hidden states [59,60].
Conclusion.—We have measured the distribution of the

first-passage times for electrons tunneling between the two
islands of a double dot. Our experimental results perfectly
agree with the predictions of an exact theory [22,23]. We
have also proposed a simple approximation for the dis-
tribution of the first passage times (4), which accounts for

FIG. 4. First-passage-time fluctuation relation. The ratio
PNðtÞ=P−NðtÞ for several values of N. Symbols are the exper-
imental data, solid lines the exact theory [22], dashed lines the
approximation (8). Inset: the ratio of the total probabilities
integrated over time, AN=A−N ; symbols are the experimental
data, dashed line is approximation (8).
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the non-Gaussian statistics of electron tunneling via the
third cumulant of the distribution of the number of trans-
mitted electrons. This universal result applies to any
stochastic process and captures the leading non-Gaussian
correction to the central limit theorem. The approximation
(4) fits the experimental data quantitatively without free
parameters. Finally, we have experimentally verified a
fundamentally important fluctuation relation for the first
passage times (8).
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