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We describe a family of quantum error-correcting codes which generalize both the quantum hypergraph-
product codes by Tillich and Zémor and all families of toric codes on m-dimensional hypercubic lattices.
Parameters of the constructed codes, including the minimum distances, are given explicitly in terms of
those of binary codes associated with the matrices used in the construction.
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Quantum low-density parity-check (q-LDPC) codes
are the only class of codes known to combine finite rates
with nonzero fault-tolerant (FT) thresholds [1,2], and to
allow scalable quantum computation with a finite multi-
plicative overhead [3]. However, unlike in the classical
case, where capacity-approaching codes can be constructed
from random sparse matrices [4–7], matrices suitable for
constructing quantum LDPC codes are highly atypical in
the corresponding ensembles. Thus, an algebraic ansatz
is required to construct large-distance q-LDPC codes.
Precious few examples of algebraic constructions are
known that give finite rate codes and also satisfy conditions
[2] for fault-tolerance: bounded weight of stabilizer gen-
erators and minimum distance that scales logarithmically or
faster with the block length n. Such constructions include
hyperbolic codes on two- and higher-dimensional mani-
folds [8–12], and quantum hypergraph-product (QHP) and
related codes [13–15]. Further, some constructions, e.g., in
Refs. [16–20], have finite rates and relatively high dis-
tances, with the stabilizer generator weights that grow with
n logarithmically. It is not known whether these codes have
nonzero FT thresholds. However, such codes can be
modified into those with provable FT thresholds with the
help of weight reduction [21].
There is more variety for topological codes, which can

be viewed as generalizations of the toric code [22–28]
invented by Kitaev [29]. Such a code can be constructed
from any tessellation of an arbitrary surface or a higher-
dimensional manifold. The essential advantage of topo-
logical codes is locality: each stabilizer generator involves
only the qubits in the immediate vicinity of each other; this
makes planar surface codes so practically attractive.
However, locality also limits the parameters of topological
codes [30–33]. In particular, for a code of length n with
generators local in two dimensions, the number of encoded
qubits k and the minimal distance d satisfy the inequality
[30] kd2 ≤ OðnÞ. This implies asymptotically zero rate,
k=n → 0, whenever d diverges with n.
In this work we construct a family of q-LDPC codes that

generalize the QHP codes [13,14] to higher dimensions,

and explicitly calculate their parameters, including the
minimum distances. Our codes relate to toric codes on
hypercubic lattices [24–28] in exactly the same fashion as
the QHP codes relate to the square-lattice toric code. Just
as different m-dimensional toric codes on a hypercubic
lattice are parts of an m complex [25], here we also
construct m complexes, chain complexes with m nontrivial
boundary operators. Our construction is recursive: it
defines an m-complex Km as a tensor product of a shorter
chain complex Km−1 and a 1-complex K1, a linear map
between two binary vector spaces. In particular, the
construction of the 2-complex K2 in terms of two binary
matrices is identical to QHP codes [13,14].
Previously, related constructions have been considered

in Refs. [19,21,34]. Hastings [21] only considered pro-
ducts with 1-complexes that correspond to classical rep-
etition codes, in essence, the same construction that appears
in “space-time” codes used in the analysis of repeated
syndrome measurement [1,2,35,36]. On the other hand,
Audoux and Couvreur [19] and Campbell [34] only
considered products of 2-complexes. Their lower bounds
on code distances are not as strong as ours.
In addition to defining new classes of quantum LDPC

codes with parameters known explicitly, our construction
may be useful for (i) optimizing repeated measurements in
the problem of FT quantum error correction [1,2,35,36],
(ii) related problem of single-shot error correction [34,
37–39], (iii) analysis of transformations between different
QECCs, like the distance-balancing trick by Hastings [21],
and (iv) construction of asymmetric quantum CSS codes
optimized for operation where error rates for X and Z
channels may differ strongly [40–45].
We start with a brief overview of error correcting codes

and chain complexes; see, e.g., Refs. [19,25,46–50] for
much more information. A classical binary linear code C
with parameters ½n; k; d� is a k-dimensional subspace of the
vector space Fn

2 of all binary strings of length n. The code
distance d is the minimal Hamming weight of a nonzero
string in the code. A code C≡ CG can be specified in terms
of the generator matrix G whose rows are the basis vectors
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of the code. All vectors orthogonal to the rows of G form
the dual code C⊥G ¼ fc ∈ F2

njGcT ¼ 0g. The matrix G is
also called the parity check matrix of the code C⊥G.
Given an index set I ⊆ f1; 2;…; ng of length jIj ¼ r,

and a string c ∈ Fn
2, let c½I� ∈ F r

2 be a substring of c with
the bits at all positions i ∉ I dropped. Similarly, for an
n-column matrix G with rows gj, G½I� is formed by the
rows gj½I�. If C ¼ CG is a linear code with the generating
matrix G, the punctured code Cp½I�≡ fc½I�∶c ∈ Cg is a
linear code of length jIj with the generating matrix G½I�.
The shortened code Cs½I� is formed similarly, except only
from the codewords which have all zero bits outside I,
Cs½I� ¼ fc½I�∶c ¼ ðc1; c2;…; cnÞ ∈ C and ci ¼ 0 for each
i ∉ Ig. If C ¼ C⊥P has the parity check matrix P, P½I� is the
parity check matrix of the shortened code Cs½I�.
A chain complex is a sequence of finite-dimensional

vector spaces …;Aj−1;Aj;… with boundary operators
∂j∶ Aj−1 ← Aj that map between each pair of neighboring
spaces, with the requirement ∂j∂jþ1 ¼ 0, j ∈ Z. In this
work we only consider vector spaces Aj ¼ F

nj
2 formed by

binary vectors of length nj ≥ 0, and define an m-complex
A≡KðA1;…; AmÞ, a length-(mþ 1) chain complex with a
basis, in terms of nj−1 × nj binary matrices Aj serving as
the boundary operators,

A∶ f0g ∂0A0 A1A1… AmAm 
∂mþ1f0g; ð1Þ

where the neighboring matrices must be mutually orthogo-
nal, Aj−1Aj ¼ 0, j ∈ f1;…; mg. In addition to boundary
operators given by the matrices Aj, implicit are the trivial
operators ∂0∶ f0g ← A0 and ∂mþ1∶ Am ← f0g treated
formally as zero 0 × n0 and nm × 0 matrices.
Elements of the subspace Imð∂jþ1Þ ⊆ Aj are called

boundaries; in our case these are linear combinations of
columns of Ajþ1 and, therefore, form a binary linear code
with the generator matrix AT

jþ1, ImðAjþ1Þ ¼ CAT
jþ1
. In the

singular case j ¼ m, Imð∂mþ1Þ ¼ f0g, a trivial vector
space. Elements of Kerð∂jÞ ⊂ Aj are called cycles; in
our case these are vectors in a binary linear code with the
parity check matrix Aj, KerðAjÞ ¼ C⊥Aj

. In the singular case

j ¼ 0, Kerð∂0Þ ¼ A0.
Because of the orthogonality ∂j∂jþ1 ¼ 0, all boundaries

are necessarily cycles, Imð∂jþ1Þ ⊆ Kerð∂jÞ ⊆ Aj. The
structure of the cycles in Aj that are not boundaries is
described by the j th homology group,

HjðAÞ≡HðAj; Ajþ1Þ ¼ KerðAjÞ=ImðAjþ1Þ: ð2Þ

The group quotient here means that two cycles [elements of
KerðAjÞ] that differ by a boundary [element of ImðAjþ1Þ]
are considered equivalent, denoted as x≃y∈Aj. Explicitly,
y ¼ xþ Ajþ1α for some α ∈ Ajþ1. Nonzero elements of
HjðAÞ are equivalence classes of homologically nontrivial

cycles. The rank of jth homology group is the dimension of
the corresponding vector space; one has

kj ≡ rankHjðAÞ ¼ nj − rankAj − rankAjþ1: ð3Þ

The homological distance dj is the minimum Hamming
weight of a nontrivial element (any representative) in the
homology group HjðAÞ≡HðAj; Ajþ1Þ,

dj ¼ min
0≄x∈HjðAÞ

wgt x ¼ min
x∈KerðAjÞnImðAjþ1Þ

wgt x: ð4Þ

By this definition, dj ≥ 1. To address singular cases,
throughout this work we assume that the minimum of an
empty set is an infinity; kj ¼ 0 always implies dj ¼ ∞.
In addition to the homology group HðAj; Ajþ1Þ, there is

also a generally distinct co-homology group H̃jðÃÞ ¼
HðAT

jþ1; A
T
j Þ of the same rank (3); this is associated with

the co-chain complex Ã formed from the transposed
matrices AT

j taken in the opposite order. A quantum
Calderbank-Shor-Steane (CSS) code [51,52] with gener-
ator matrices GX ¼ Aj and GZ ¼ AT

jþ1 is isomorphic with

the direct sum of the groups Hj and H̃j,

QðAj; AT
jþ1Þ ≅ HðAj; Ajþ1Þ ⊕ HðAT

jþ1; A
T
j Þ: ð5Þ

The two terms correspond to Z and X logical operators,
respectively. The code distance can be expressed as a
minimum over the distances dj and d̃j of the two homo-
logy groups. Parameters of such a code are written
as ½½nj; kj;minðdj; d̃jÞ��.
The tensor productA × B of two chain complexesA and

B is defined as the chain complex formed by linear spaces
decomposed as direct sums of Kronecker products,

ðA × BÞl ¼⨁iþj¼lAi ⊗ Bj; ð6Þ

with the action of the boundary operators

∂ 000ða ⊗ bÞ≡ ∂ 0ia ⊗ bþ ð−1Þia ⊗ ∂ 00j b; ð7Þ

where a ∈ Ai, b ∈ Bj, and the boundary operators ∂ 0i, ∂ 00j ,
and ∂ 000 act in complexes A, B, and A × B, respectively.
When bothA and B are bounded, that is, they include finite
numbers of nontrivial spaces, the dimension njðCÞ of a
space Cj in the product C ¼ A × B is

njðCÞ ¼
X
i

niðAÞnj−iðBÞ: ð8Þ

The homology groups of the product C ¼ A × B are
isomorphic to a simple expansion in terms of those of A
and B, which is given by the Künneth theorem,
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HjðCÞ ≅ ⨁iHiðAÞ ⊗ Hj−iðBÞ: ð9Þ

One immediate consequence is that the rank kjðCÞ of the jth
homology group HjðCÞ is

kjðCÞ ¼
X
i

kiðAÞkj−iðBÞ: ð10Þ

Our first result is an upper bound on the distances of the
homological groups in a chain complex A × B, an imme-
diate extension of Cor. 2.14 from Ref. [19],

djðCÞ ≤ min
i
diðAÞdj−iðBÞ: ð11Þ

Proof of Eq. (11).—This is a consequence of a version of
the Künneth theorem for a pair of chain complexes with
chosen bases, see Proposition 1.13 in Ref. [19]. Namely, if,
for each r ∈ Z, the sets Xr ⊂ Ar and Yr ⊂ Br induce bases
for HrðAÞ and HrðBÞ, respectively, then, for every j ∈ Z,
the vectors in the set

Zj ¼ fx ⊗ yji ∈ Z; x ∈ Xi; y ∈ Yj−ig ð12Þ

induce a basis for HjðA ⊗ BÞ. Now, if we choose each of
the sets Xr and Yr to contain the corresponding minimum-
weight vectors, minimum weight of the elements of the set
(12) equals to the right-hand side in Eq. (11). The
homology group is trivial, kjðA ⊗ BÞ ¼ 0 and Zj ¼ ∅,
only if at least one of the sets in each pair fai; bj−ig, i ∈ Z
is empty, which implies that the corresponding product
diðAÞdj−iðBÞ be infinite, consistent with the result given by
our convention, djðCÞ ¼ ∞ whenever kjðCÞ ¼ 0. □

Our second result is a lower bound on the distance for the
special case where B ¼ KðPÞ is a 1-complex induced by an
r × c binary matrix P. This bound matches the upper bound
in Eq. (11), and thus ensures the equality for the case where
B is a 1-complex. This expression,

djðA × BÞ ¼ min (djðAÞd0ðBÞ; dj−1ðAÞd1ðBÞ; ); ð13Þ

where B ¼ KðPÞ is a 1-complex, is our main result.
With A the m complex in Eq. (1), the tensor product

C≡A × B can be written as an (mþ 1) complex,
C ¼ KðC1;…; Cmþ1Þ, with the block matrices

Cjþ1 ¼
�Ajþ1 ⊗ Er ð−1ÞjEnj ⊗ P

Aj ⊗ Ec

�
; ð14Þ

where Er denotes the r × r identity matrix. The sign in the
top-right corner ensures orthogonality CjCjþ1 ¼ 0; in our
case spaces are binary and signs have no effect. We also
notice that since ∂0 and ∂mþ1 inA are both trivial, matrices
C1 and Cmþ1, respectively, will be missing the lower and
the left block pairs. If we denote u≡ rankP, the two

homology groups associated with B have ranks κ0 ≡
k0ðBÞ ¼ r − u and κ1 ≡ k1ðBÞ ¼ c − u, respectively.
Equations (8) and (10) give in this case,

n0j ¼ njrþ nj−1c and k0j ¼ kjκ0 þ kj−1κ1; ð15Þ

where we use the primes to denote the parameters of C,
n0j ≡ njðCÞ and k0j ≡ kjðCÞ. We now prove the claimed
lower bound for the distance [53]:
Theorem 1. Consider m-complex A in Eq. (1), and

assume that homological groups HjðAÞ have distances dj,
0 ≤ j ≤ m. Given an r × c binary matrix P of rank u,
construct matrices Cj in Eq. (14). Denote δ the minimum
distance of a binary code with the parity check matrix P;
by our convention, δ ¼ ∞ if u ¼ c. The minimum dis-
tance d0j ≡ djðCÞ of the homology group HðCj; Cjþ1Þ,
0 ≤ j ≤ mþ 1, satisfies the following lower bounds: (i) if
r > u, d0j ≥ minðdj; dj−1δÞ, otherwise, (ii) if r ¼ u,
d0j ≥ dj−1δ.
We notice that in Eq. (13), djðAÞ≡ dj, d1ðBÞ ¼ δ, while

d0ðBÞ ¼ 1 in case (i) and it is infinite in case (ii).
Proof of Theorem 1.—Start with (i). Take a block vector

e ¼ ðe1je2Þ, with e1 ∈ F
njr
2 , e2 ∈ F

nj−1c
2 , with component

weights w1 ≡ wgtðe1Þ < dj, and w2 ≡ wgtðe2Þ < dj−1δ,
and assume CjeT ¼ 0. We are going to show that e is a
linear combination of columns of Cjþ1.
Step 1: This step is needed if dj is finite; otherwise let

C0j ¼ Cj, C0jþ1 ¼ Cjþ1, e0 ¼ e, and proceed to step 2. Mark
the columns in Aj which are incident on nonzero positions
in e1. That is, write

e1 ¼
Xr
i¼1

ai ⊗ xi;

where ai ∈ F
nj
2 , and xi ∈ F r

2 with the only nonzero bit at
position i. Take I0 the union of the supports of all vectors

ai. Denote the corresponding submatrix of Aj as Að0Þj ¼
Aj½I0�; this is the generating matrix of a code CAj

punctured

at the positions not in I0. Further, denote A
ð0Þ
jþ1 a transposed

generating matrix of the code CAT
jþ1

shortened to I0; it is

obtained from a linear combination of columns of Ajþ1 by
dropping rows not in I0.
By construction, nð0Þj ≡ jI0j ≤ w1; since w1 < dj, the

homology group HðAð0Þj ; Að0Þjþ1Þ is trivial. Now, increase I0
by adding indices of all linearly independent columns of Aj

to get I1 ⊇ I0 and A0j ¼ Aj½I1�, such that jI1j− jI0j¼
rankðA0jÞ− rankðAð0Þj Þ and in addition rankðA0jÞ¼ rankðAjÞ.
Similarly, denote A0jþ1 a transposed generating matrix of
the code CAT

jþ1
shortened to I1; it satisfies rankðA0jþ1Þ ¼

rankðAð0Þjþ1Þ. Then HðA0j; A0jþ1Þ still has zero rank, and
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HðAj−1; AjÞ ¼ HðAj−1; A0jÞ. Use Eq. (14) to construct
the corresponding matrices C0j and C0jþ1 and define the
punctured vectors e01 ¼

P
i ai½I1� ⊗ xi, e0 ¼ ðe01je2Þ. Since

we only removed zero positions, the new vector satisfies
C0jðe0ÞT ¼ 0. Also, if there exists a vector α0 ∈ C0jþ1 such
that ðe0ÞT ¼ C0jþ1ðα0ÞT , then necessarily eT ¼ Cjþ1αT with
some α ∈ Cjþ1.
Step 2: Consider the decomposition

e2 ¼
Xc
l¼1

fl ⊗ yl; fl ∈ F
nj−1
2 ; ð16Þ

where yl ∈ F c
2 has the only nonzero bit at l. The identity

C0jðe0ÞT ¼ 0 implies Aj−1fTl ¼ 0 for any 1 ≤ l ≤ c. For
those lwhere fTl is linearly dependent with the columns of

A0j, f
T
l ¼ A0jα

T
l with some αl ∈ C0j ¼ F

n0j
2 , render this vector

to zero by the equivalence transformation

ðe0ÞT → ðe0ÞT þ C0jþ1ð0jαl ⊗ ylÞT:

Such a transformation only affects one vector fl. It may
also modify the first block of e0, which is of no importance
since HðA0j;A0jþ1Þ is trivial. The resulting vector ē0 ¼
ðē01je02Þ has the second block of weight wgtðe02Þ ≤
wgtðe2Þ < dj−1δ, it satisfies C0jðē0ÞT ¼ 0, and in its block
representation (16) the remaining nonzero vectors fl ∈
HðAj−1; A0jÞ have weights dj−1 or larger.
Step 3: For sure, there remains fewer than δ of nonzero

vectors fl. Thus, in a decomposition, e02 ¼
Pnj−1

j¼1 zj ⊗ cj,

where zj ∈ F
nj−1
2 have the only nonzero bit at j, and

cj ∈ F c
2, the union of supports of the vectors cj, I2, has

size c0 ≡ jI2j < δ. Indeed, I2 is just the set of the
indices l corresponding to the remaining nonzero vectors
fl. Construct a matrix P0 ¼ P½I2� by dropping the columns
of P outside of I2. Since there are fewer than δ columns left,
c0 < δ, the resulting classical code contains no nonzero
vectors, c0 ¼ rankP0. Construct the modified matrices C00j
and C00jþ1 and define the punctured vectors e

00
2 ¼

Pn0
j¼1 zj ⊗

cj½I2� and e00 ¼ ðē01je002Þ such that C00j ðe00ÞT ¼ 0. Now, after
we trimmed the columns of both Aj and of P, according to
Eq. (15), the homology group HðC00j ; C00jþ1Þ is trivial. This
implies that e00 must be a linear combination of the columns
of C00jþ1, that is, ðe00ÞT ¼ C00jþ1β

T , for some binary vector β.
The transformation to C00jþ1 and e00 amounts to dropping

some columns and rows from the matrix C0jþ1, and some
matching positions from ē0. All nonzero bits of ē0 are
preserved, as are all involved columns of P. This implies
that ē0 can be also obtained as a linear combination of
columns of C0jþ1. Combined with the equivalence trans-
formation in step 2, we get ðe0ÞT ¼ C0jþ1ðα0ÞT ; the con-
struction of step 1 then implies existence of α ∈ Cjþ1 such

that eT ¼ Cjþ1αT for the original two-block vector
e¼ðe1je2Þ. Thus, any such e with block weights w1<dj
and w2 < dj−1δ which satisfies CjeT ¼ 0 is necessarily a
linear combination of the columns of Cjþ1. This guaran-
tees d0j ≥ minðdj; dj−1δÞ.
To complete the proof, consider the case (ii). Here, step 1

can be omitted; the matrices resulting from steps 2 and 3
alone would give the trivial homology group, regardless of
the weight wgtðe1Þ of the first block. Thus, in this case we
get the lower bound d0j ≥ dj−1δ.
Let us now consider tensor products of several

1-complexes. The space dimensions, row and column
weights, and homology group distances do not depend
on the order of the terms in the product. Further, if the
matrices used to construct one-complexes are ðυ;ωÞ sparse,
that is, their column and row weights do not exceed υ and
ω, respectively, the matrices in the resulting m-chain
complex are ðmυ; mωÞ sparse. In particular, when K ¼
KðRÞ is a 1-complex associated with a circulant check
matrix R of the repetition code, K×D recovers all the
D-dimensional toric codes.
Next, consider an r × c full-row rank binary matrix P

with r < c, and assume that a binary code C⊥P has distance
δ. The 1-complex K≡KðPÞ has two nontrivial spaces of
dimensions r and c; the corresponding homology groups
have ranks 0, κ, and distances ∞, δ. The 1-complex K̃ ≡
KðPTÞ generated by the transposed matrix has equivalent
spaces taken in the opposite order, with the same homology
group ranks, but the distances are now 1 and ∞, respec-
tively. For the (aþ b)-complex Kða;bÞ ≡K×a × K̃×b con-
structed as tensor products of K and/or K̃ in any order, the
only nontrivial homology group HaðKða;bÞÞ, acting in the
space of dimension

naðKða;bÞÞ ¼
Xa
i¼0

c2iraþb−2i
�
a

i

��
b

i

�
< ðrþ cÞaþb;

has rank κaþb and distance δa. The corresponding quantum
CSS code has distance minðδa; δbÞ, and its stabilizer
generators have weights not exceeding ðaþ bÞmaxðυ;ωÞ.
Good weight-limited classical codes with finite rates κ=c

and finite relative distances δ=c can be obtained from
ensembles of large random matrices [4–7]. Any of these
can be used in the present construction. Then, for any pair
ða; bÞ of natural numbers, we can generate weight-limited
q-LDPC codes with finite rates and the distances dX ¼ δa,
dZ ¼ δb whose product scales linearly with the code
length. QHP codes are a special case of this construction
with a ¼ b ¼ 1.
Unlike in the case of QHP codes, with any a > 1, b > 1,

the rows of matrices GX ¼ Ka ≡ KaðKða;bÞÞ, GZ ¼ KT
aþ1

satisfy a large number of linear relations resulting from
the orthogonality with the matrices Ka−1 and Kaþ2,
respectively. These can be used to correct syndrome
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measurement errors. Even though the resulting syndrome
codes do not have large distances (with a finite probability
some errors remain), the use of such codes in repeated
measurement settings could simplify the decoding and/or
improve the decoding success probability in the case of
adversarial noise [34]. Such improvements with stochastic
noise have been demonstrated numerically in the case of
D ¼ 4 toric codes in Ref. [54].
In conclusion, we derived an explicit expression for

the distances of the homology groups in a tensor product
of two chain complexes assuming one of the complexes
has length two. Immediate use of this result is in theory of
quantum LDPC codes. Our result greatly extends the
family of QHP codes whose parameters are known explic-
itly. Higher-dimensional QHP codes can be especially
useful in fault-tolerant quantum computation, to optimize
repeated syndrome measurement in the presence of meas-
urement errors.
In addition, we believe that the lower distance bound in

Theorem 1 can be extended to a general product of two
chain complexes. If this is the case, the right-hand side in
Eq. (11) would give explicitly the distances, not just an
upper bound. Such a result could have substantial appli-
cations in many areas of science where homology is used.
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