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We develop an extension of the variational quantum eigensolver (VQE) algorithm—multistate
contracted VQE (MC-VQE)—that allows for the efficient computation of the transition energies between
the ground state and several low-lying excited states of a molecule, as well as the oscillator strengths
associated with these transitions. We numerically simulate MC-VQE by computing the absorption
spectrum of an ab initio exciton model of an 18-chromophore light-harvesting complex from purple
photosynthetic bacteria.
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The accurate modeling of the many-body interactions in
the ground- and excited-state solutions of the electronic
Schrödinger equation is a prerequisite for the quantitative
prediction of molecular physical phenomena such as light
harvesting. Using classical computers, this problem scales
formally as the factorial of the number of involved electrons
[1], via the solution of the full configuration interaction
(FCI) equations, though many polynomial-scaling approx-
imations such as density functional theory [2–5] (DFT),
coupled cluster theory [6–9] (CC), density matrix renorm-
alization group [10,11] (DMRG), adaptive and/or stochas-
tic configuration interaction methods [12–18] (CIPSI and
variants), and semistochastic coupled cluster methods
[19,20] have been developed to combat this problem.
Recently, there has been a surge of interest in using
quantum computers to naturally solve the many-body
electronic structure problem through methods such as
the iterative phase estimation algorithm [21–26] (IPEA)
or the variational quantum eigensolver [27–32] (VQE),
However, the quartic-scaling complexity in number of
molecular orbitals of the second-quantized electronic
Hamiltonian, coupled with the overhead of encoding the
fermionic antisymmetry of the electrons through the
Jordan-Wigner [33,34], Bravyi-Kitaev [35,36], or superfast
Bravyi-Kitaev [37,38] transformations, implies that rather
long circuit depths will be required to directly model the
electronic structure problem. We also point out a recent
approach [39–41] that might formally reduce this complex-
ity to quadratic or linear via a tensor hypercontraction
representation [42–44] of the potential. In the present work,
we explore a domain- and problem-specific means to
reduce the complexity of the representation of the elec-
tronic structure problem in quantum computing: an ab initio
exciton model [45–49]. For large-scale photoactive

complexes consisting of a number of nonbonded chromo-
phore units, the ab initio exciton model compresses the
details of the electronic structure on each chromophore into
a handful of monomer electronic states. The determination
of the full configuration interaction wave functions describ-
ing the mixing of monomer electronic states in the full
complex remains a formidable task—here we show that this
might be a natural computational task for a near-term
quantum computer.
Another area that deserves exploration is the develop-

ment of efficient quantum algorithms for the even-handed
treatment of ground- and excited-state energies and tran-
sition properties, e.g., for the computation of absorption
spectra. There exist IPEA-type algorithms for excited
states, such as the witness-assisted variational eigenspectra
solver protocol [50] or the variational swap test [51], but we
focus on VQE-type methods here. Most existing VQE-type
quantum algorithms are “state specific,” meaning that they
optimize the VQE parameters for one state at a time.
Examples include the folded spectrum method [27], which
requires the observation of the square of the Hamiltonian,
or the orthogonality-constrained VQE method [52,53],
which applies a penalty term to remove contaminants from
lower-lying states. Another, more-global approach is the
quantum subspace expansion (QSE-VQE) [54,55], which
first performs VQE to determine the ground state, and then
determines the excited states by classical diagonalization
on a basis of response states. QSE-VQE treats all the
excited states on a similar footing, but by construction
favors the ground state, and requires the determination of
three- and four-particle density matrices through high-order
Pauli measurements.
MC-VQE.—Inspired by the mixed quantum-classical

strategy of QSE-VQE (particularly the final classical
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diagonalization step), we have developed a new multistate
contracted variant of VQE (MC-VQE), which aims to
(1) treat the ground and a handful of excited states on the
same footing, (2) minimize the size of the classical sub-
space that must be diagonalized, and (3) provide for the
straightforward computation of transition properties such
as oscillator strengths. MC-VQE takes the following ansatz
for a number (NΘ) of eigenstates of interest

jΨΘi≡ Û
X

Θ0
jΦΘ0 iVΘ0Θ: ð1Þ

Here jΦΘi are a set of contracted, orthonormal “reference”
states, which are obtained by solving a classical electronic
structure problem such as configuration interaction singles
(CIS). By contracted, we mean that these reference
states are generally taken to be a linear combination of
Hilbert-space configurations—ideally this will allow the
reference states to be reasonably accurate approximations
to the exact eigenstates. As will be seen, all that we will
require is that we have an efficient quantum circuit to
prepare the “diagonal” state jΦΘi and the “interfering” state
ðjΦΘi � jΦΘ0 iÞ= ffiffiffi

2
p

. For CIS reference states, this is
possible—see the Supplemental Material [56] for a detailed
circuit which generalizes a previously known circuit for
jWNi states [57].
The operator ÛðfηgÞ is the VQE entangler matrix, an

orthogonal Hilbert-space matrix constructed from a set of
two-qubit entangling operators whose set of parameters fηg
will be chosen to maximally decouple fjΦΘ0 ig from the
rest of the Hilbert space, i.e., to approximately block
diagonalize the Hamiltonian. The matrix VΘ0Θ is an
NΘ × NΘ orthogonal matrix that describes the rotation of
the entangled contracted states fjχΘ0 i≡ ÛjΦΘ0 ig to the
approximate eigenbasis fjΨΘig. This matrix can be deter-
mined by classical diagonalization of the entangled
contracted Hamiltonian

HΘ00Θ0VΘ0Θ ¼ VΘ00ΘEΘ∶ VΘ0ΘVΘ0Θ00 ¼ δΘΘ00 : ð2Þ

The eigenvalues EΘ are the Ritz approximations to the
exact eigenvalues. The entangled contracted Hamiltonian is

HΘΘ0 ≡ hΦΘjÛ†Ĥ Û jΦΘ0 i: ð3Þ

The diagonal matrix elements can be evaluated by partial
tomography measurements in a quantum computer, as is
done in standard VQE

HΘΘ ¼ hΦΘjÛ†Ĥ Û jΦΘi: ð4Þ

The (real) off-diagonal matrix elements can also be
obtained from observable quantities

2HΘ≠Θ0 ¼ ðhΦΘjþhΦΘ0 jÞÛ†Ĥ Û ðjΦΘiþ jΦΘ0 iÞ=2
−ðhΦΘj− hΦΘ0 jÞÛ†Ĥ Û ðjΦΘi− jΦΘ0 iÞ=2: ð5Þ

This highlights the need for quantum circuits to prepare the
“interfering” state ðjΦΘi � jΦΘ0 iÞ= ffiffiffi

2
p

.
The parameters of the MC-VQE entanglement circuit

should be chosen to maximally decouple the full set of
approximate eigenstates fjΨΘig from the rest of the Hilbert
space. This can be accomplished in a two-norm sense in the
Hamiltonian by optimizing the parameters of the VQE
entangler operator to minimize the state-averaged energy

Ē ¼ 1

NΘ

X

Θ
EΘ ¼ 1

NΘ

X

Θ
HΘΘ: ð6Þ

The second equality follows from the definition of the trace
and shows that the minimization of the state-averaged
energy is equivalent to the minimization of the sum of
diagonal contracted Hamiltonian matrix elements.
Overall, the MC-VQE algorithm has the following

four stages: (1). Classically solve CIS or some other
polynomial-scaling electronic structure problem to “sketch
out” the shapes of the relevant states by determining the
contracted reference states fjΦΘig. (2). Vary the para-
meters of the VQE entangler operator to optimize the
state-averaged energy Ē ¼ ð1=NΘÞ

P
Θ HΘΘ. (3). For the

converged VQE entangler operator, observe the reference-
state Hamiltonian HΘΘ0 using sums and differences
of Hamiltonian expectations of interference states.
(4). Classically diagonalize HΘΘ0 to obtain the Ritz esti-
mates of the eigenstates and eigenvalues. A schematic of
the quantum circuit needed to prepare a CIS state jΦΘi and
apply the VQE entangler Û is shown in Fig. 1—the two-
body SO(4) entanglers, e.g., ÛAB

2 are constructed from
known six-parameter circuit elements [58–61]—full details
of this circuit are available in the Supplemental Material
[56]. Overall, the MC-VQE approach has a number of

FIG. 1. Example MC-VQE quantum circuit for N ¼ 4 linear
exciton model. The first stage prepares contracted CIS reference
states jΦΘi [or interference variations ðjΦΘi � jΦΘ0 iÞ= ffiffiffi

2
p

thereof] specified by rotation angles in the Ry and Fy gates.
The second stage applies the many-body VQE entangler Û
specified through a polynomial number of rotation angles two-
body U2 entangler gates. One- and two-body Pauli measure-
ments of this circuit then determine the entangled contracted
Hamiltonian matrix elements HΘΘ0 .
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following unique features relative to established excited-
state VQE approaches such as quantum subspace expan-
sion (QSE-VQE) [54]: (i). The VQE entangler Û is
optimized in a state-averaged manner, providing a balanced
treatment of ground and excited states, i.e., all states are
computed to approximately equal accuracy. (ii) The opti-
mization of the VQE entangler Û requires only the
measurement of NΘ diagonal matrix elements HΘΘ. The
determination of the N2

Θ off-diagonal matrix elements
HΘ≠Θ0 can be done separately, after the VQE entangler
parameters have been optimized. (iii) Higher-order density
matrices are not required.
Note that the eigenstates can be reexpressed as jΨΘi≡

ÛjΓΘi where fjΓΘi≡P
Θ0 jΦΘ0 iVΘ0Θg are rotated refer-

ence states. The algorithm above is quite general—we
present a demonstration below for the case of the ab initio
exciton model, but it is clear that this approach might be
immediately applicable to the efficient computation of
excited states in fermionic electronic structure computa-
tions. Transition properties (such as the transition dipole
moment, needed for computing the absorption spectrum)
can also be computed by substituting the desired operator Ô
in place of Ĥ in Eq. (5).
It is worth noting that MC-VQE can be roughly pictured

either as a generator of the wave function ansatz of Eq. (1)
or as a means to observe the elements of the unitarily
transformed effective Hamiltonian of Eq. (4), wherein the
VQE entangler operator Û acts as a wave operator [62,63].
Ab initio exciton model.—Consider a set of N chromo-

phoric monomers, each labeled by index A, which are
arranged in a particular nuclear geometry in a photoactive
complex. In isolation, the chromophores are usually char-
acterized by a constant number of photoactive electronic
states, regardless of the number of electrons in the mono-
mer (often between two and four states are photoactive in
the visible spectrum in the monomer: the ground and the
first few singlet excited states). If the monomers are
sufficiently far apart in the full photoactive complex
(e.g., if they are at noncovalent separations due to embed-
ding in a protein scaffold), the strict considerations of
fermionic antisymmetry can be relaxed without loss of
accuracy, and the full complex electronic eigenstates can be
computed as a configuration interaction of direct products
of monomer states. That is, for electronic state Θ in a
system where each chomophoric monomer is characterized
by the ground state j0Ai and the first excited state j1Ai (a
restriction we make from here onward to facilitate ease of
mapping to qubits), the electronic states are

jΨΘi ¼
X

p0;q1…∈½0;1�
CΘ
p0q1…rN−1

jp0i ⊗ jq1i ⊗ � � � ⊗ jrN−1i:

ð7Þ
Typically, we wish to find these adiabatic electronic states,
e.g., to determine the energy gaps and oscillator strengths in

the system as a proxy for the electronic absorption
spectrum. Formally, this requires diagonalization of the
exciton Hamiltonian, which can straightforwardly be writ-
ten in Pauli matrix notation for the special case considered
here of a photoactive system with two electronic states per
monomer

Ĥ ¼ E þHð1Þ þHð2Þ ¼ EÎ þ
X

A

ZAẐA þ XAX̂A

þ
X

A>B

XXABX̂A ⊗ X̂B þ XZABX̂A ⊗ ẐB

þ ZXABẐA ⊗ X̂B þ ZZABẐA ⊗ ẐB: ð8Þ

The choice of Hamiltonian matrix elements
fZA;XA;ZZAB;ZXAB;XZAB;XXABg for a given photo-
active complex is an interesting art. Choosing these
parameters empirically to match experiment or other
reference data is the crux of the phenomenological
Frenkel-Davydov exciton model [64,65]. Recently, we
introduced a new ab initio exciton model approach
[45–49], in which the parameters of the exciton model
are determined explicitly by high-level ab initio computa-
tions on the isolated monomers, under the assumption of
sufficient monomer separations to relax the fermionic
antisymmetry constraint. We have extended the ab initio
exciton model to treat full nonadiabatic dynamics through
the development of analytical gradients or coupling vectors
[46,47] and have increased the basis set to include both
local and charge-transfer excitations [47].
In this ab initio exciton model, the Hamiltonian matrix

elements in Eq. (8) all have distinct physical origins: E is
the mean-field energy,ZA is roughly (half) of the difference
between the ground- and excited-state energy of monomer
A, XXAB is the transition-dipole–transition-dipole inter-
action and ZZAB is the difference-dipole–difference-dipole
interaction between monomers A and B, and XZAB and
ZXAB are transition-dipole–difference-dipole interaction
cross terms. ZA and XA carry Fock-matrix like dressings
from the mean-field electrostatic environment of the
system. A full definition of the matrix elements is available
in the Supplemental Material [56].
Diagonalizing this Hamiltonian to obtain the eigenstates

fjΨΘig, even for a model of this simplicity, is difficult
classically due to the 2N dimension of the Hilbert space
jp0i ⊗ jq1i ⊗ … ⊗ jrN−1i. To highlight this, we point out
that this part of the problem is usually solved classically in
a highly restricted Hilbert space where only single exci-
tations are allowed [45–47]: for many energy-transfer
applications this may be reasonable, but will be incapable
of describing the conical intersection between the ground
and lowest-excited states [66]. However, it is apparent that
the ab initio exciton Hamiltonian is entirely isomorphic to
an extended spin-lattice Hamiltonian. Therefore, existing
technologies for the quantum simulation of spin-lattice
Hamiltonians should provide utility for this problem.
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Below, we demonstrate the potential for this mapping by
simulating the quantum computation of the absorption
spectrum of a large photoactive complex using MC-
VQE. Note that we are not the first to propose a crossover
between exciton models for photoactive complexes and
spin-lattice models in qubits: there have been myriad prior
studies using phenomenological exciton models to
theoretically characterize [67–69] or physically simulate
[70–73] the exciton energy transfer (EET) process in open
systems such as the Fenna-Matthews-Olsen complex.
However, the emphasis in the prior literature has been
on the modeling of the dissipative nonadiabatic dynamics
of EET through coupling with the protein or solvent
environment in an effective way (via effective phonon
coupling approaches such as the Holstein model). In our
approach, we emphasize the accurate ab initio computation
of the electronic absorption spectrum at a given nuclear
configuration, as a prerequisite for direct nonadiabatic
dynamics simulations.
Demonstration.—MC-VQE circuits were implemented

in our in-house quantum simulator package, QUASAR. All
aspects of state preparation, VQE entanglement, and
casting of transition matrix elements as difference obser-
vables were performed in the simulator, though one- and
two-body Pauli expectation values were evaluated through
contractions of wave function amplitudes (equivalent to
infinite averaging of discrete Pauli measurements), and
noise or error channels were not modeled. CIS is solved
classically on the basis of the reference and all singly
excited configurations. We avoid the “barren plateaus”
issue of locating optimized VQE parameters [74] by
finding a tightly converged and near-global-optimal sol-
ution for the 108 MC-VQE parameters which is directly
downhill from a zero-entanglement guess in 14 L-BFGS
iterations, using finite-difference gradients [56].
For a practical test case, an ab initio exciton model was

constructed for the N ¼ 18 cyclical LH2 B850 ring
complex of the purple photosynthetic bacteria—the spe-
cific geometry is provided in the Supplemental Material
[56]. Monomer Hamiltonian matrix elements were com-
puted in the graphical processing unit (GPU)-accelerated
TERACHEM program [75–77] for classical electronic struc-
ture theory, using TDA-TD-DFT [4] at ωPBEðω ¼ 0.3Þ=
6-31G� [78,79]. Dimer Hamiltonian matrix elements were
approximated by the dipole–transition-dipole model.
Dimer Hamiltonian matrix elements were truncated after
cyclical nearest-neighbor contacts due to the r−3AB decay of
the interactions. Figure 2 depicts the simulated absorption
spectrum of this ab initio exciton model computed from the
excitation energies and oscillator strengths of the lowest 18
electronic transitions with MC-VQE and CIS, and com-
pared to the “full configuration interaction” (FCI) reference
computed in the space of all possible 2N monomer
excitation configurations. The CIS absorption shows a
noticeable blue shift of a few hundredths of an eV relative

to FCI, and, more noticeably, the CIS oscillator strengths
may deviate by 10% or more, particularly for the brightest
states. By contrast, MC-VQE with a single entangler layer
is visually indistinguishable from FCI—the maximum
deviations of excitation energies are on the order of tens
of μeV, while the oscillator strengths generally deviate
by ≪ 1%. At the request of a reviewer, we have also
considered a test case where CIS produces qualitatively
incorrect results relative to FCI: an N ¼ 8 linear stack of
BChl-a chromophores. MC-VQE has no trouble with this
system and again produces results which are essentially
visually indistinguishable from FCI; see the Supplemental
Material [56] for full details.
Outlook.—In this Letter, we have demonstrated a hybrid

quantum or classical approach for the modeling of
electronic absorption spectra in large-scale photoactive
complexes by using a multistate, contracted variant of
VQE (MC-VQE) in the context of an ab initio exciton
model. We simulated MC-VQE for an N ¼ 18 LH2 B850
complex (a Hilbert space dimension of 218 ¼ 262144). The
MC-VQE absorption spectrum matches FCI quantitatively
with only a single layer of VQE two-body entanglers with a

FIG. 2. Top—simulated absorption spectrum of N ¼ 18 cycli-
cal LH2 B850 ring complex (geometry depicted in inset),
computed from the excitation energies and oscillator strengths
of the lowest 18 electronic transitions, depicted as vertical sticks.
The envelope of the absorption spectrum is sketched by broad-
ening the contribution from each transition with a Lorentzian with
width of δ ¼ 0.05 eV. The simulated MC-VQE and reference
FCI results are visually indistinguishable. Middle—errors in
excitation energies. Bottom—errors in oscillator strengths.
Middle and bottom—thin lines are a guide for the eye.
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connectivity matching that of the exciton Hamiltonian.
With a qubit count equivalent to the number of monomers
N, a circuit depth that is linear in N, a gate count that is
quadratic in N, and a requirement of only one- and a sparse
set of two-body Pauli measurements, MC-VQE applied to
an ab initio exciton model with local Hamiltonian con-
nectivity is a compelling application for deployment to
near-term quantum hardware.
This Letter is intended to sketch the salient features of

the MC-VQE algorithm and its potential application to the
ab initio exciton model. Future work will investigate robust-
ness of the algorithm on realistic hardware including the
influence of gate and measurement errors. Ab initio exciton
Hamiltonians with more-complicated local connectivity that
are unlikely to be addressable with classical methods such as
DMRG should also be investigated. Beyond this, effort
should be devoted to direct implementation on real hard-
ware, where circuit locality and simplification or sparsifi-
cation will be of key importance. Finally, MC-VQE should
be explored in the context of direct simulation of fermionic
electronic structure problems—it seems highly likely that
this algorithm will be easily adaptable to the study of
multiple excited states in many types of Hamiltonians
beyond the ab initio exciton model.

This material is based on work partially supported by the
U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research (SciDAC)
program.
Financial disclosure.—T. J. M. is a cofounder of

PetaChem LLC. R. M. P. and P. L. M. own stock or options
in QC Ware Corp.

Note added.—Recently we learned of the “subspace
search” VQE (SSVQE) approach developed by
Nakanishi, Mitarai, and Fujii in a preprint [80]. Both
SSVQE and MC-VQE use a state-averaged VQE entangler
Û, and both describe how to compute transition properties.
The methods have several key differences: SSVQE uses
hybrid quantum-classical optimization to determine the
minimal and maximal eigenvectors in the subspace matrix,
while MC-VQE uses classical diagonalization of the sub-
space Hamiltonian to determine all subspace eigenstates
simultaneously. Additionally, MC-VQE uses contracted
reference states (e.g., from CIS), while SSVQE uses
Hilbert-space configurations.
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