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We investigate the effect of an anisotropic substrate on the turbulent dynamics of a simulated two-
dimensional active nematic. This is introduced as an anisotropic friction and an effective anisotropic
viscosity, with the orientation of the anisotropy being defined by the substrate. In this system, we observe
the emergence of global nematic order of topological defects that is controlled by the degree of anisotropy
in the viscosity and the magnitude of the active stress. No global defect alignment is seen in passive liquid
crystals with anisotropic viscosity or friction confirming that ordering is driven by the active stress. We then
closely examine the active flow generated by a single defect to show that the net kinetic energy of the flow
is dependent on the orientation of the defect relative to the substrate, resulting in a torque on the defect to
align it with the anisotropy in the substrate.
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Active nematics are fluids consisting of self- (or mutu-
ally) propelling rod shaped particles resulting in an aniso-
tropic fluid with broken rotational symmetry that drives
itself at the microscopic scale [1–5]. This combination of
broken rotational symmetry and out of equilibrium, active
behavior has led to an explosion of interest from both
experimental and theoretical physics [1,2,6–9]. There have
been many successful experiments reproducing active
nematics often utilizing biological components, including
microtubule kinesin suspensions [1,2,10] and elongated
cells [11–14], but also from inert components such as
vibrated monolayers of granular rods [15]. Active polar
liquid crystals have also been experimentally realized using
actomyosin gels [16,17].
These systems display a rich phenomenology depending

on many factors such as the degree to which the system is
driven [7], the confining geometry [18], the density [13],
and the boundary conditions [19]. By varying these factors
it is possible to observe diverse spatiotemporal patterns
including vortices [14,18], oscillating textures [16,20], and
traveling bands [16,18]. When the driving force is suffi-
ciently high, active nematics can spontaneously nucleate
many topological defects, generating flows and interacting
chaotically in a regime referred to as low Reynolds number,
active turbulence [1,7,11,21]. These defects have been
shown to exert elastic and hydrodynamic torques on each
other [22–26], and experiments have indicated that long
range nematic order of defects is possible in a state of active
turbulence [27] though this has not yet been reproduced
theoretically. It has been shown that the position and
orientation of these defects can be influenced by the
substrate on which the active nematic is placed. By
changing the geometry of the substrate it is possible to

reorient defects and sort them by charge [28], and by
changing the topology of the substrate it is possible to
control the total number of defects and their trajectories
[20]. A defect ordered active nematic has been recreated by
placing a two-dimensional (2D) active nematic on top of a
passive liquid crystal that can be controlled by an external
magnetic field [29]. When the passive liquid crystal layer is
ordered into a smectic state by the magnetic field, it creates
a global anisotropy, defined by the orientation of the
director in the passive liquid crystal. When the two layers
are in contact, the passive liquid crystal layer acts as an
anisotropic dissipative agent for the flows generated in the
driven active layer. As a result, the active nematic layer
forms antiparallel channels containing ordered topological
defects [29].
In this Letter, we explore how the introduction of

anisotropic dissipative forces can lead to activity driven
order in a simulated turbulent active nematic. First, we
define a general viscosity and friction for a standard
continuum model for active nematics in two dimensions.
We then introduce the anisotropy to these quantities based
on the substrate frame of reference. We observe that the
active stress drives global nematic alignment of defects in
the presence of anisotropic viscosity but not anisotropic
friction. This global nematic order depends on the degree
of anisotropy in the viscosity and the degree to which the
active nematic is driven. We then support the hypothesis
that this ordering is an active process by simulating
passive liquid crystals with anisotropic viscosity which
displays no such ordering. Finally, we analyze the flow
patterns around a single defect, noting that the energy
dissipation of the active flows induces an active torque on
the defects.
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We start from the generic form of the equations gov-
erning an incompressible active nematic which are given by

ρ∂tvi ¼ ∂jσ
ðtÞ
ij − ∂jpδij − μijvj; ð1Þ

½∂t þ vi∂i�Qij ¼ λSuij þQikωkj − ωikQkj þ γ−1Hij; ð2Þ

where ρ is the density, σðtÞij is the total stress tensor, and
the tensor μij contains the friction coefficients. Because
we are considering the incompressible limit, ∂ivi ¼ 0 and
ρ ¼ 1 everywhere. Qij ¼ Sðninj − δij=2Þ is the nematic
tensor, S is the nematic order parameter, and λ is the
flow alignment parameter. The strain rate tensor is given
by uij ¼ ð∂ivj þ ∂jviÞ=2, vorticity tensor ωij ¼
ð∂ivj − ∂jviÞ=2, and molecular tensor Hij ¼ −∂F=∂Qij

where F is the Landau–de Gennes free energy, and in two
dimensions is given by

F ¼ K
2

Z
dA

�
j∇Qj2 þ 1

ϵ2
trQ2ðtrQ2 − 1Þ

�
; ð3Þ

where the parameter ϵ is a characteristic length, which
is proportional to the core defect radius, and K is the
elastic constant associated with distortions in the director
field. The cubic term is not included here as in a 2D system
it is identically zero. Previous experiments on active
nematics influenced by anisotropic substrates have con-
sidered microtubule-based active nematics on a substrate of
octyl-cyanobiphenyl (8CB) [29]. In such a system, we
expect any nematic anchoring between the two layers to
be very small due to the large difference in length scale
between the microtubules (∼25 nm diameter) and the 8CB
(∼1 nm length). For this reason, we assume no surface
anchoring in Eq. (3).
The total stress tensor (σðtÞ) is the sum of elastic stresses

(σðeÞ), viscous stresses (σðvÞ), and the active stress generated
by the molecular motors (σðaÞ) controlled by parameter α.
In the general form, these stress tensors are given by

σðeÞij ¼ −λSHij þQikHkj −HikQkj; ð4Þ

σðvÞij ¼ νijkl∂kvl; ð5Þ

σðaÞij ¼ αQij: ð6Þ

We introduce the anisotropy through the viscous stress
tensor and the friction tensor. Since this anisotropy is
defined by the substrate, we must introduce an external
frame of reference. Without loss of generality we assume
that the high and low viscosity directions are aligned
parallel to the x and y axes. With this condition we can
assume the viscous stress tensor in two dimensions has the
form

σðvÞxx ¼ ν1∂xvx; ð7Þ

σðvÞxy ¼ ðν2∂xvy þ ν3∂yvxÞ=2; ð8Þ

σðvÞyx ¼ ðν4∂yvx þ ν5∂xvyÞ=2; ð9Þ

σðvÞyy ¼ ν6∂yvy: ð10Þ

If at this stage we were to set all values of ν to be
identical, we would obtain the normal viscous stress tensor
for an isotropic fluid. Without loss of generality, we set
ν6 ¼ ν. We make the further simplifying assumptions,
allowed by symmetry for an incompressible fluid, that ν3 ¼
ν5 ¼ ν1 ¼ ν and that ν2 ¼ νð1 − ΔνÞ and ν4 ¼ νð1þ ΔνÞ
with the constraint (0 ≤ Δν ≤ 1). Here ν controls the
magnitude of the isotropic viscosity, and the anisotropic
contributions to the viscosity are controlled with the
dimensionless parameter Δν. When Δν ≠ 0 the dissipative
effects of the perpendicular gradient of a flow are different
depending on whether it is aligned with the x or y axis. This
introduces an antisymmetric part to the viscous stress
tensor, owing to the fact that the substrate is additionally
serving as an angular momentum sink. It should be noted
that the anisotropic viscosity that we have introduced here
depends on an external frame of reference (the x and
y axes); hence, it is no longer Galilean invariant [30].
The viscosity introduced here is that which would exist in a
fully ordered incompressible nematic oriented parallel to
the x axis [31], which is similar to the substrate used by
Guillamat et al. [29]; see Supplemental Material [32] for
details.
The anisotropic friction tensor can be defined

generally as

μij ¼ μð0Þδij þ μð1Þij ; ð11Þ

where μ0 is the general isotropic substrate friction and μij is
the anisotropic part of the friction containing the required
symmetries of the substrate. Since the friction tensor must
be symmetric, it can be diagonalized by the correct choice
of basis. We achieve this by choosing our friction asym-
metry to align with our basis coordinates (the x and y axes).
Therefore, the off diagonal components of the anisotropic

friction tensor must be zero (μð1Þxy ¼ μð1Þyx ¼ 0), and we can
define the anisotropic friction with two coefficients. We
introduce the anisotropy in a similar fashion to the viscosity
and set μxx ¼ μ0ð1 − ΔμÞ and μyy ¼ μ0ð1þ ΔμÞ. This
formulation allows us to control the degree of anisotropy
fully by the dimensionless parameters Δν and Δμ.
Equations (1) and (2) are simulated with a periodic

boundary in two dimensions recreating an active nematic
with varying degrees of anisotropy in either the viscosity or
friction. The model parameters are selected such that the
system is in a state of active turbulence containing of the
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order of 200 defects; see Supplemental Material [32] for
details. We choose to look at the influence of anisotropic
viscosity and friction independently by either setting Δμ or
Δν to zero in all results presented here. Figure 1 shows the
resulting director (top row) and vorticity (bottom row) of
active nematics with isotropic hydrodynamics (left col-
umn), anisotropic viscosity (middle column), and aniso-
tropic friction (right column). From these images it is very
difficult to distinguish the nematic textures of each system.
The vorticity fields show some signs of anisotropy, with
some short wavelength fluctuations in the y direction being
visible for the anisotropic viscosity system.
The lowest energy topological defects in a two-

dimensional nematic have half integer charge, resulting
in the characteristic �1=2 defects that are regularly
observed in active nematics. Since these defects are not
rotationally symmetric, they have an easily defined ori-
entation which wewill annotate ψ . The angle of the director
field (θ) around any of these defects can be expressed as
θ ¼ kðϕ − ψÞ þ ψ , where ϕ is the polar angle between a
reference axis (in this case the x axis) and the position
around the defect core and k gives the charge of the defect
[22]. We use this definition to measure the orientation, ψ ,
of all defects in the simulated nematic.
The nematic correlation function between positive

defects is defined by C2ðrÞ ¼ hcos½2ðψ i − ψ jÞ�ii−j∼r,
shown in Fig. 2(a). Here we see that the orientational
correlation length between defects is largely unaffected
by the introduction of anisotropic friction or viscosity.
The correlation length is set by the active length scale,
given by l2α ∼ K=α. This is the length at which the active
and elastic forces balance, and is proportional to the inter
defect spacing [7,21]. The location of the minimum of
the curve does not change; hence the introduction of

anisotropic friction and viscosity does not affect the active
length scale or the elastic torques that defects inflict upon
each other.
The distribution of þ1=2 defect orientations within a

simulated active nematic with isotropic friction and vis-
cosity in the turbulent regime is uniform; i.e., there is no
global alignment of defects. The same is true for an active
nematic with anisotropic friction [Fig. 2(b)]. However, for
an active nematic with anisotropic viscosity, a clear nematic
order emerges with positive defects being preferentially
aligned parallel with the direction associated with the
lowest viscosity [Fig. 2(c)]. We measure the magnitude
of this order by fitting the histogram to the function
fðψÞ ¼ 0.5=π þ Θ cosð2ψÞ, allowing us to observe that
the ordering is stronger with a more significant anisotropy;
see Fig. 2(c) (inset). This emergent global order is mediated
by the magnitude of the active stress, with the nematic
ordering of the defects becoming reduced when the activity
is either too high or too low [Fig. 2(d)]. These results
suggest that the ordering of defects within an active nematic
is related to the interaction between the flow generated
by the defects and the anisotropic viscosity of the fluid.
However, when the activity becomes very large, the align-
ment is lost [Fig. 2(d)] (inset).
In order to test the hypothesis that the active flow drives a

global alignment, we perform a similar study in passive
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FIG. 1. Typical director (top) and vorticity (bottom) for an
isotropic active nematic (left), an active nematic with anisotropic
viscosity (middle) and anisotropic friction (right). The difference
between the fields is not obvious; however, some short wave-
length fluctuations in the y direction of the vorticity field are
visible in the anisotropic viscosity case.
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FIG. 2. (a) Nematic correlation function between positive
defects. The location and depth of the minima are not signifi-
cantly affected by the anisotropy, which implies that the active
length scale and the elastic torques between defects are un-
affected by the anisotropy. (b) Probability density function for the
orientation of defects (ψ ) within an active nematic with varying
degrees of anisotropic friction (Δμ); there is no clear order in the
defect orientations. (c) Probability density function for the
orientation of defects within an active nematic with varying
degrees of anisotropic viscosity (Δν); a clear nematic order (Θ) is
observed that increases with the degree of anisotropy (inset).
(d) Global nematic order is not observed for very small or very
large values of activity for fixed anisotropy (Δν ¼ 0.3). We can
identify an apparent peak in the active stress (inset).
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nematic systems with anisotropic viscosity and friction. In
the absence of an active stress, a passive nematic will relax
toward the lowest energy state of the system, a uniform
director field. If the nematic starts from an initially
disordered state containing many defects, this process of
minimizing the internal energy involves significant rear-
rangement of the director and the annihilation of many
defects; see Fig. 3(a). This motion of the nematic generates
a flow in the suspending fluid; see Fig. 3(b). The intro-
duction of anisotropic friction or viscosity does not appear
to affect this relaxation process of a passive nematic, with
the number of defects in all samples decaying at a very
similar rate [Fig. 3(c)]. By simulating many passive
nematics from independent, random initial conditions for
the same amount of time, it is possible to create many
samples of a passive nematic all at the same stage of
relaxation containing a similar number of defects. This
approach can be used to study large numbers of interacting
defects in passive nematics and has been used here to
confirm no global nematic orientation of defects, even in
cases with anisotropic friction or viscosity; see Fig. 3(d).
These observations indicate that the hydrodynamic flows
generated by elastic interactions alone are insufficient to
generate any net defect ordering in our system.
The results presented in Figs. 2 and 3 indicate that the

ordering of defects observed in active nematics is due to the
interactions between the active flow and the anisotropic
viscosity. The flow is generated by gradients in the nematic
director and usually maximized around defects which
generate characteristic flow patterns [7]. The positive
defects generate strong polar flows which lead them to

“swim” through the fluid giving them a self-propelled
particlelike behavior. By simulating the flow field gener-
ated by a fixed nematic texture containing a single defect
with a predetermined orientation, we can observe directly
how the flow interacts with the anisotropic viscosity and
friction. In an isotropic fluid, this is of course independent
of the orientation of the defect; see Fig. 4(a) (top row). The
introduction of anisotropic viscosity and friction distorts
these flow patterns, as they adapt to the dissipative forces
of the substrate; see Fig. 4(a) (middle and bottom rows,
respectively). It is immediately apparent that when a defect
is not aligned with either principal direction, the flow
pattern around the defect loses its mirror symmetry in
anisotropic cases [Fig. 4(a)] (middle column).
Figure 4(b) shows the net kinetic energy of the flow

around a defect E ¼ ρ
R
v2dA. For the isotropic case,

this is independent of defect orientation. When anisotropic
viscosity or friction is introduced, we observe a clear
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FIG. 3. Snapshot of a typical nematic director (a) and vorticity
(b) at the point of measurement for a passive nematic with
anisotropic viscosity. (c) Number of defects as a function of
simulation time. The introduction of anisotropic hydrodynamics
does not appear to affect the course graining dynamics. (d) Prob-
ability density function for the orientation of positive defects in a
passive nematic at the point of measurement containing 96-104
total defects. We see no emergent global order.
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FIG. 4. (a) Flow pattern around a single positive defect for
different orientations (column) and different anisotropies (row).
We see that the mirror symmetry of flow around the defect core
can be lost due to anisotropic viscosity or friction for certain
orientations. (b) Kinetic energy (E) of the flow around each
defect as a function of orientation for various degrees of
anisotropy in either the viscosity (solid lines) or friction (dashed
lines). (c) Kinetic energy of the flow around a defect for various
values of activity (α) for systems with anisotropic viscosity (solid
lines) and friction (dashed lines). Lowest energy configuration is
always for the defect to be parallel with the x axis.
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dependence of the net kinetic energy of the flow and the
defect orientation, with the system being in a minimum
energy configuration when the defect is aligned parallel to
the direction of minimal shear viscosity ψ ¼ 0. In both
cases, the magnitude of the energy difference depends on
the magnitude of the anisotropyΔ but is significantly larger
for the anisotropic viscosity case [Fig. 4(b)]. As the active
stress is increased, we see that the dependence of the energy
on the defect orientation increases for systems with
anisotropic viscosity, but not in cases with anisotropic
friction [Fig. 4(c)]. This supports the hypothesis that the
global ordering of defects is driven by activity.
In active nematics, the active stress drives the system

toward “active turbulence,” a chaotic state at low Reynolds
number featuring many topological defects with no net
order. This highlights a common feature, that the insertion
of active stresses often acts to reduce order, in this case
destroying the order of the nematic director and proliferating
defects. When the viscosity of the active nematic has an
anisotropy defined by an external frame of reference, in this
case the substrate, the active flows can lead to the emergence
of global nematic order of the topological defects driven by
the active stress. This is evidenced by the fact that such order
is not observed in systems with no active stress. Topological
defects generate active flows in the fluid, the kinetic energy
of which must be dissipated by the friction and viscosity of
the fluid.When the fluid viscosity defined by the substrate is
anisotropic, the rate of energy dissipation depends on the
orientation of a defect relative to the substrate. This energy
difference generates a torque on the core of the defect leading
to a preferential orientation. This torque depends on the
magnitude of the anisotropy and the active stress. However,
the active stress also defines the interdefect spacing and
the defect lifetime. When the active stress is increased, the
interdefect spacing is reduced. This leads to a relative
increase in the elastic torques the defects exert on each
other,which eventually overcomes the ordering effects of the
anisotropic viscosity. In the case of anisotropic friction, the
active stress does not increase the torque on the defects,
so when the system is in a state of active turbulence, the
disordering effects of the activity outweigh the ordering
effects of the anisotropic friction in all observed cases.
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