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We identify the quantum metric dipole as the geometric origin of the nonreciprocal directional dichroism
which describes the change in the refractive index upon reversing the light propagation direction.
Specifically, we find that the static limit of the nonreciprocal directional dichroism corresponds to a
quadrupolar transport current from the quantum metric dipole, in response to a quadrupolar electric field.
Moreover, at a finite frequency, we demonstrate that the steepest slope of the averaged quantum metric
dipole gives rise to a peak in the differential refractive index between counterpropagating lights. Finally, we
illustrate both features in a low-energy model.
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Spatially dispersive optical effects can often yield
incisive information on the structural and electronic proper-
ties of matter. A well-known example is natural optical
activity in noncentrosymmetric materials [1]. If time-
reversal symmetry is also broken, spatial dispersion can
give rise to another phenomenon known as nonreciprocal
directional dichroism (NDD) [2], referring to the difference
in the refractive index between counterpropagating lights.
Because of its dependence on both broken time-reversal
and inversion symmetry, NDD provides a powerful probe
of the dynamical coupling between electricity and magnet-
ism in matter [3–11].
To date, the microscopic understanding of NDD has been

dominated by molecular theories of electromagnetic multi-
poles [12,13]. Despite its wide adoption in the literature,
this formalism cannot access physics associated with the
geometric structure of Bloch states in the momentum space,
whose importance has been made increasingly clear in
recent years [11,14,15]. In particular, it has been shown that
optical activity and the gyrotropic magnetic effect are
connected to the Berry curvature and orbital magnetic
moment, revealing their geometric origin [16–18].
In this Letter, we identify the quantum metric as the

geometric origin of NDD. Specifically, NDD is connected
to the first-order moment of the quantum metric, which is
hence referred to as the quantum metric dipole. Using
the semiclassical transport theory, we show that the
integration of the quantum metric dipole over the Fermi
surface yields a static current driven by a quadrupolar
electric field. Such a current is the dc counterpart of NDD
and exists in metals with broken time-reversal and inver-
sion symmetry. Moreover, the quantum metric can be
interpreted as the quadrupole moment of the Bloch state.
Our result thus provides an interesting dual to the role of

orbital magnetic moment in optical activity: The depend-
ence of the refractive index on light helicity is determined
by the dipole of the orbital magnetic moment [17,18], while

that on the propagation direction is determined by the
dipole of the electric quadrupole moment.
We then use the linear response theory to show that NDD

at a finite frequency is also determined by the quantum
metric dipole. We find that the steepest slope of the
averaged quantum metric dipole can give rise to a peak
in the differential refractive index between counterpropa-
gating lights. Finally, we illustrate both the static quad-
rupolar current and the peak structure of NDD in a low-
energy minimal model, which is relevant to van der Waals
antiferromagnets. Our result shows that NDD can be used
to probe the geometric structure of Bloch states and also
opens the door to band structure engineering of NDD.
Phenomenological theory of NDD.—We first give a brief

account of the phenomenological theory of NDD in terms
of the optical conductivity [19]. In a medium, the light
propagation is characterized by the refractive index n,
which can be solved from the Maxwell equations. The
wave equation for the electric field reads

∇ × ð∇ × EÞ ¼ −μ0
∂J
∂t −

1

c2
∂2E
∂t2 ; ð1Þ

where μ0 is the vacuum permeability and c is the speed of
light. Let us consider a monochromatic light polarized
along the x direction and propagating along the z direction.
The current J is induced by the electric field through the
conductivity tensor σijðω; qÞ, Jiðω; qÞ ¼ σijðω; qÞEjðω; qÞ,
with ω and q being the frequency and wave vector,
respectively, of the light. If the spatial dispersion is weak,
we can expand σijðω; qÞ in powers of q:

σijðω; qÞ ¼ σijðω; 0Þ þ σijkðω; 0Þqk þ � � � : ð2Þ

The derivation of the refractive index n can be simplified
by exerting the following symmetry constraints. First, we
assume the mirror-z symmetry is broken but mirror-x
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symmetry is present. This forbids the existence of
σxyðω; qÞ. We further assume that the system is rotationally
invariant about the z axis, so that σxxz ¼ σyyz. By inserting
the electric field profile E ∝ eiωnzz=c−iωt in Eq. (1) and using
the above symmetry assumptions, we obtain n2z¼ðn0þ
iκ0Þ2þicμ0nzσxxz with n0 þ iκ0 ¼ ð1þ iμ0c2σxx=ωÞ1=2.
The solution reads

nz ¼ icμ0σxxz=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn0 þ iκ0Þ2 − c2μ20σ

2
xxz=4

q
: ð3Þ

If we reverse the propagation direction, the first term in
Eq. (3) flips sign. Therefore, the difference in the refractive
index is Δn ¼ nz − n−z ¼ icμ0σxxzðω; 0Þ. Alternatively,
we can write [20]

Δn ¼ 1

2
icμ0½σxxzðω; 0Þ − σ⋆xxzð−ω⋆; 0Þ�: ð4Þ

Here, ω → ωþ iη has a small imaginary part.
Note that in the literature the NDD is usually descri-

bed within the electromagnetic multipole approxima-
tion [12,13]. Here, we have taken the Landau-Lifshitz
approach by eliminating the magnetic field from our theory
via the Maxwell equation. These two approaches are
equivalent [26].
Electric quadrupolar current.—To reveal the geometric

origin of NDD, we first consider its static counterpart, i.e.,
a current driven by a spatially varying but static electric field
in metals. As ∇ × E ¼ 0, the electric field must be quad-
rupolar as shown in Fig. 1. We will adopt the semiclassical
transport theory, since the band geometry enters naturally
in the semiclassical equations of motion. Below, we sketch
the derivation and leave the details to Supplemental
Material [20]. Our starting point is the equations of motion
in crystals under a slowly varying electric field:

_r ¼ 1

ℏ
∂kε̃m − _k ×Ωm −Ωkr;m · _r; ð5Þ

ℏ_k ¼ −eEþΩrk;m · ℏ_k; ð6Þ
where Ωm ¼ −2Imh∂kumj × j∂kumi is the momentum-
space Berry curvature, with jumi being the periodic part

of Bloch functions in the mth band, and ðΩkr;mÞij ¼
−2Imh∂kiumj∂rjumi is the mixed Berry curvature with
ðΩkr;mÞij ¼ −ðΩrk;mÞji. The appearance of Ωkr;m is due to
the modification of the Bloch function by the inhomo-
geneous electric field.
The quantity of interest here is the band energy given by

ε̃m ¼ εm þ δε, where εm is the unperturbed band energy
and δε ¼ 1

2
eð∂iEjÞgij;m is the correction to εm [20]. Here,

gij;m is the Fubini-Study quantum metric [27,28]

gij;m ¼ Reh∂kiumj∂kjumi − Ai;mAj;m; ð7Þ

where Ai;n ¼ hunji∂kiuni is the intraband Berry connection.
Geometrically, gij;m measures the distance between neigh-
boring Bloch states [27,28]. As the quantum metric enters
in the energy correction by coupling to ∂iEj, it can be
viewed as the electric quadrupole of Bloch states, con-
sistent with the definition of the electric quadrupole in the
electromagnetic theory.
Since the system considered here breaks both time-

reversal and inversion symmetry, a linear magnetoelectric
coupling is allowed. Consequently, a spatially varying
electric field can induce a spatially varying magnetization,
which gives rise to a magnetization current. It is well
established that the magnetization current should be dis-
counted, and the transport current reads [Eq. (4) of
Ref. [29]]

Jtr ¼ −e
X
m

Z
dk
8π3

D_rfm

−∇r ×
e
ℏ

X
m

Z
dk
8π3

kBTΩm logð1þ eðμ−εmÞ=kBTÞ; ð8Þ

where fm is the Fermi function andD ¼ 1þ TrΩkr;m is the
modified density of states [30].
To evaluate Eq. (8) at the order of ∂E, we also need the

response of the Berry curvature to the electric field, which
reads Ω0

m¼2e∇k×Re
P

n≠mAmnðAnm ·EÞ=ωmn [21], where
ωmn ¼ εm − εn and Amn ¼ humji∂kuni is the interband
Berry connection.
By plugging Eq. (5) and Ω0

m into Eq. (8), we can obtain
the transport current. We find that only the term containing
∂kδε remains and all other contributions cancel. We leave
the details to Supplemental Material [20]. The final result
reads

Jtrx ¼ −2e
Z

dk
8π3

fm∂kxδε ¼ γxxz∂zEx; ð9Þ

where

γjik ¼
e2

ℏ

X
m

Z
dk
8π3

Gijk;mf0m; ð10Þ
FIG. 1. The electric quadrupolar current. The electric field in
red arrows has the quadrupolar profile. The resulting quadrupolar
current is in purple arrows.
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Here,Gijk;m ¼ vi;mgjk;m with vi;m being the band velocity is
the quantum metric dipole, defined similarly to the Berry
curvature dipole [31]. The factor of 2 in Eq. (9) appears
because in the static case ∂zEx ¼ ∂xEz. f0m ¼ ∂fm=∂ε.
Since the quantum metric is the Bloch state quadrupole,
Gijk;m can also be viewed as the momentum space dipole of
the electric quadrupole. We emphasize that Eq. (9) repre-
sents the leading-order transport current responsible for
NDD at a low frequency (as discussed later). Its connection
to the quantum metric dipole given in Eq. (10) is valid for
any band structure with an arbitrary number of bands.
Equation (9) is an intrinsic current independent of the

transport relaxation time. It is also a Fermi surface effect
and is, hence, important in metals and semiconductors.
Since this current is in response to the variation of the
electric field and not the electric field itself, it persists even
if the net electric field across the whole sample is zero.
NDD at finite frequencies.—We now reveal the geo-

metric origin of NDD at finite frequencies. For this
purpose, we need to express Δn in Eq. (4) in terms of
Bloch functions. We start from the standard Kubo formula
of the optical conductivity:

σijðω; qÞ ¼ −
e2

iω

X
m;n

Z
dk

ð2πÞ3
ðfmk−q − fnkÞMij

εmk−q − εnk þ ℏωþ iη
;

ð11Þ
where Mij ¼ humk−qjv̂ijunkihunkjv̂jjumk−qi and v̂ is the
velocity operator. It is obvious that the photon wave vector
q shifts the crystal momentum and connects neighboring
Bloch states in momentum space which are linked by the
quantum metric. As such, the quantum metric should
appear naturally in NDD.
To explicitly demonstrate the role of quantum metric, we

expand σxxðω; qÞ in Eq. (11) to the linear order of q. The
general expression is presented in Supplemental Material
[20]. The result can be simplified by considering the optical
transition between two bands. In this case, we obtain [20]

Δn ¼ −
e2cμ0
2ℏ

X
m;n¼c;v

Z
dk
8π3

½AðGzxx;mf0m þ Gzxx;nf0nÞ

þ BðGzxx;m þGzxx;nÞ þ CðGxxz;m þ Gxxz;nÞ�: ð12Þ

In Eq. (12), we have explicitly separated the geometric
contribution from the spectral contribution. The coeffi-
cients A, B, and C depend only on the spectrum:

A ¼ ω2
mn

ω2
mn − ω2

þ iπωδðωþ ωmnÞ;

B ¼ −
2Δfmnω

3
mn

ðω2
mn − ω2Þ2 þ iπ

Δfmnω
2
mn

ω

d
dω

δðωþ ωmnÞ;

C ¼ 2Δfmnωmn

ω2
mn − ω2

− 2iπΔfmnδðωþ ωmnÞ;

where Δfmn ¼ fm − fn. The indices m and n run between
the conduction (c) and valence (v) bands. We note that in
insulators the expression for ReΔn is consistent with
Imσxxz in Ref. [22].
The quantum metric dipole G fully conforms to the

symmetry requirement for NDD. gjk is even under time-
reversal (T) and inversion (I) operations. Because of the
appearance of the velocity, Gijk is odd under T or I and
even under combined TI. Moreover, bothGxxz andGzxx are
odd under mirror-z symmetry. Therefore, Δn will vanish
identically if T or I or mirror-z symmetry is present.
Armed with the insight that NDD has its geometrical

origin in the quantum metric dipole, next we examine the
peak structure of Δn as a function of ω. We will focus on
ImΔn, which can be measured by light absorbance. In
Eq. (12), the imaginary parts of the first and third terms
contain delta functions and, hence, experience a peak when
the averaged quantummetric dipole reaches a maxima, e.g.,
when the joint density of state experiences the van Hove
singularity. However, the second term in Eq. (12) also
contributes a peak of a different origin. It contains the
derivative of the delta function and can be rewritten as

iπcμ0
2ω

d
dλ

hGzxx;m þGzxx;ni
���
λ¼−ω

; ð13Þ

where hxiðλÞ ¼P
m;n¼c;v

R ðdk=8π3ÞxΔfmnω
2
mnδðωmn − λÞ

is the average of x for a fixed parameter λ. Equation (13)
shows that ImΔn will exhibit a peak when the averaged
quantum metric dipole has the steepest slope. Because of
the Kramers-Kronig relation, ReΔn should also have a
peak at the same frequency.
Low-energy model.—To demonstrate the geometrical

features of NDD, we consider the following Hamiltonian:

Ĥ ¼ v0ikz þ vτikxσx þ vkyσy þ
�
Δi þ

k2z
2mi

�
σz; ð14Þ

where i is the valley index and, for each valley τi ¼ �1, 2Δi
is the band gap, v is the in-plane Fermi velocity, andmi > 0
is the effective mass along the z direction. The first term
with v0i introduces an anisotropy in the z direction and,
hence, effectively breaks the mirror-z symmetry for each
valley. The energy spectrum around each valley is shown in
Fig. 2. For fixed kz, the corresponding 2D Hamiltonian is a
gapped Dirac model that can be realized in layered two-
dimensional magnets such as MnPX3 (X ¼ S, Se) mono-
layers [32,33]. The kz dependence can be introduced by
stacking these 2D magnets along the z direction, and the v0
term will appear when the stacking order breaks the mirror-
z symmetry.
Since the valleys contribute additively, we shall limit our

discussion to just one valley. The low-energy model has a
net quantum metric dipole in each valley. For illustration
purposes, we consider the dipoles of gxx for the valence
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band, which form a vector ðGxxx; Gyxx; GzxxÞ. After inte-
grating this vector over kx, we find that Gxxx vanishes, and
the remaining components form a vector in the ky-kz plane.
In Fig. 3, we sketch such a vector field using streamline
arrows and a color map to represent its direction and
magnitude, respectively. We observe that the direction
distribution is symmetric. However, the magnitude distri-
bution is symmetric only about ky ¼ 0 axis. About the
kz ¼ 0 axis, it has a clear dipolar structure with a stronger
hot spot in the lower-half plane due to v0i.
We now quantitatively demonstrate the influence of

the quantum metric dipole on Δn for a two-valley
system. For each valley, we calculate the averaged quantum
metric dipole hGi ¼ hGzxx;m þ Gzxx;ni with the chemical

potential in the band gap. We find that hGi ¼
Δ2Sðω=ΔÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mv02=2Δ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω=ð2ΔÞ − 1

p
with Sðω=ΔÞ being

a dimensionless structure factor [20]. Clearly, the magni-
tude of hGi is proportional to the strength of the mirror-z
symmetry breaking term v0. Moreover, it has the steepest
slope at ω ¼ 2Δ. Consequently, according to Eq. (13), Δn
has a term proportional to 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω=ð2ΔÞ − 1

p
and, hence, has

a peak at ω ¼ 2Δ (the band edge).
In Fig. 4(a), we plot Δn and G as a function of ω

with the Fermi energy lying in the band gap. Clearly,
there are two peaks. This is because, according to above
analysis, for each valley, the slope of hGi has a maxi-
mum at ω ¼ 2Δi. Since Δ1 ≠ Δ2, there will be two peaks
corresponding to the optical transition from each valley.
This peak structure remains in the metallic case when
the chemical potential falls inside the band instead of the
band gap [20], confirming its generality. Moreover, if the
model has T or I symmetry, then Δ2 ¼ Δ1 and v01 ¼ −v02.
The two peaks will appear at the same position with
opposite values. Therefore, they will cancel each other,
and Δn vanishes.
This low-energy model also allows the static electric

quadrupolar current. In Fig. 4(b), we calculate the relevant
conductivity γxxz at a zero temperature. We find that

γxxz ¼ 0 when μ lies in the global band gap. As μ reaches
the lower band bottom but still falls inside the gap of the
other valley, γxxz increases with the density of states. When
μ further increases, the other valley will also contribute but
with opposite signs. Hence, γxxz starts decreasing. When μ
is large enough, γxxz approaches 0, as the quantum metric
dipole decays faster than the increasing density of states.
Connection to the dc transport current.—We now

demonstrate that the dc transport current in Eq. (9) can
be obtained from the linear response result in Eq. (11) by
taking a proper limit and then discounting local currents.
We first note that, in the static case, ∂zEx ¼ ∂xEz.
Therefore, to recover our dc result, we need both the
xxz and xzx components of the conductivity tensor, i.e.,
Jx ¼ σxxz∂zEx þ σxzx∂xEz ¼ ðσxxz þ σxzxÞ∂zEx. We focus
on the dirty metal case with a nonvanishing η, in which the
intrinsic current in Eq. (9) dominates over the extrinsic
ones. In this case, the static limit (ω → 0 and then q → 0)
and the uniform limit (q → 0 and then ω → 0) yield the
same intrinsic contribution [20]:

2Δ
2Δ

FIG. 2. Energy spectrum near each valley. v0 causes the
conduction band bottom and the valence band top to shift
oppositely along kz, creating indirect band gaps. The energy
difference at kz ¼ 0 yields the band gap parameter Δi.

0

0.2

0.4

0.6

0.8

1.0

kz

ky

FIG. 3. Sketch of the formation of a net quantum metric dipole.
Streamline arrows and different colors show the direction and
magnitude of the quantum metric dipole field, respectively.
Although arrows are symmetric, the color map clearly has a
dipolar structure, generating a net quantum metric dipole.

FIG. 4. Δn (a) and the electric quadrupolar current (b) in the
low-energy model. The parameters are chosen as follows:
Δ1 ¼ Δ, Δ2 ¼ 2Δ, v01 ¼ −v02 ¼ v0, and 1

2
mðv0Þ2 ¼ 0.95Δ. The

system has a small global band gap 0.1Δ. In (a), hGi is in units of
Δ2. In (b), γxxz is in units of e2=ð16π2ℏÞ.

PHYSICAL REVIEW LETTERS 122, 227402 (2019)

227402-4



Imðσxxz þ σxzxÞ ¼ −αxy þ
3

2
γxxz þ

1

2
γxzx; ð15Þ

where αxy ¼ Px=By ¼ My=Ex is the magnetoelectric cou-
pling coefficient with P and M being the polarization and
magnetization, respectively. We take the imaginary part
because ∂r ¼ iq.
The current calculated from the Kubo formula (11) is the

total current, which, according to the Maxwell equation,
can be written as

Jtot ¼
∂P
∂t þ ∇ ×M þ ∂j

_Qijêi; ð16Þ

where Qij is the induced electric quadrupole. In a transport
experiment, the current being measured is the averaged
current density over the whole sample [23]. After such a
spatial average [20], contributions due to both the magneti-
zation, corresponding to −αxy, and the induced electric
quadrupole moment, corresponding to ðγxxz þ γxzxÞ=2, drop
out from Eq. (15), and we are left with γxxz. We thus recover
the semiclassical dc result from the linear response theory.
In summary, we have identified the quantummetric dipole

as the geometric origin of NDD. The static counterpart of
NDD is a current driven by a quadrupolar electric field,
obtained by integrating the quantum metric dipole over the
Fermi surface. Moreover, the steepest slope of the averaged
quantum metric dipole yields a peak in NDD, which could
be useful for band structure engineering of NDD.

We acknowledge useful discussions with Kenneth
Burch, Nuh Gedik, Ajit Srivastava, Haidan Wen,
Xiaodong Xu, and Qi Zhang. This work is supported by
the Department of Energy, Basic Energy Sciences, Grant
No. DE-SC0012509.

Note added.—The dc transport current in Eq. (9) has also
been obtained independently in Ref. [34].
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