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We study the phase diagram and quantum critical region of one of the fundamental models for electronic
correlations: the periodic Anderson model. Employing the recently developed dynamical vertex
approximation, we find a phase transition between a zero-temperature antiferromagnetic insulator and
a Kondo insulator. In the quantum critical region, we determine a critical exponent γ ¼ 2 for the
antiferromagnetic susceptibility. At higher temperatures, we have free spins with γ ¼ 1 instead, whereas at
lower temperatures, there is an even stronger increase and suppression of the susceptibility below and
above the quantum critical point, respectively.
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Introduction.—Quantum phase transitions are exceed-
ingly exciting since, besides the spatial correlations of a
classical phase transition, also (quantum) correlations in
time become relevant at zero temperature T. This changes
the universality class, i.e., the critical exponents, and can be
best understood when considering imaginary time τ which
is restricted to τ ∈ ½0; 1=T�. Hence, at any finite T, temporal
(quantum) correlations are cut off at 1=T so that only the
spatial correlations remain relevant [1].
On the experimental side, the most well studied are

quantum critical points (QCPs) in heavy fermion systems
[2,3] such as CeCu6-xAux [4] and YbRh2Si2 [5,6].
Experimentally accessible is the unusual behavior within
the quantum critical region at a finite T above the QCP; for
a schematic, see Fig. 1. The theoretical description of such
heavy fermion QCPs is, however, still in its infancy.
The conventional Hertz[7]-Moriya[8]-Millis[9] (HMM)

theory relies on the consideration of the effective ϕ4 model
for magnetic degrees of freedom and may hence not be
applicable for heavy fermion systems with their strong
electronic correlations. HMM theory is by construction
a (renormalized) weak-coupling approach which is also
valid above the upper critical dimension, i.e., for
deff ¼ dþ z > 4. Here, the spatial dimensions d need to
be supplemented by a dynamical exponent z, which relates
the critical behavior of the correlation length in space
(ξ ∼ T−ν; ν: critical exponent) and time (ξτ ∼ T−zν) at the
QCP. Other proposals for a solution of the antiferromag-
netic (metallic) criticality problem include the fractional-
ized electron picture [10], the critical quasiparticle theory
[11], and the strong coupling theory [12]; see also [13–17]
for quantum criticality studies employing other methods.
Quantum criticality below the upper critical dimension

for deff ¼ 3 (d ¼ 2, z ¼ 1) was considered by Chubukov

et al. [18] for the Heisenberg model within a 1=N
expansion and by renormalization-group approaches for
Ising symmetry [19,20]. But again, these approaches
cannot be straightforwardly extended to include fermionic
excitations, which are actually essential regarding the
experimental realization of QCPs in heavy-fermion sys-
tems. Despite many promising approaches [1,2,21–24], we
hitherto still lack a reliable solution even for the simplest
model for heavy fermion QCPs, the periodic Anderson
model (PAM) beyond a mere (conjectured) mapping onto
bosonic models.
In this Letter, we hence analyze the QCP of the PAM by

means of a recently developed method, the dynamical
vertex approximation (DΓA) [25,26]. The DΓA is, similar
as related approaches [27–31], a diagrammatic extension of
the dynamical mean field theory (DMFT) [32–34]; for a
recent review, see Ref. [35]. From the DMFT it inherits a

FIG. 1. Schematic phase diagram of the symmetric PAM with a
T ¼ 0 quantum phase transition toward an antiferromagnetic
insulator in d ¼ 2. Emanating from the QCP, is a quantum critical
region with particular critical exponents. The parameters and
values indicate actual DΓA results presented below.
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reliable and nonperturbative description of (local) temporal
correlations. But on top of these, also nonlocal spatial
correlations are taken into account by means of ladder or
parquet diagrams, which do not take the bare interaction but
the local irreducible or fully irreducible vertex as a building
block. These diagrammatic extensions have been success-
fully employed for studying critical exponents and
phenomena in the Hubbard and Falicov-Kimball model
[36–40]. We are hence in the fortunate situation that we can
revisit quantum criticality in fermionic models thanks to
recent methodological progress.
Model and analytical considerations.—To arrive at a

non-mean-field, non-Gaussian critical behavior we study
the PAM in d ¼ 2 which can be expected to have the
same quantum critical exponents as the Heisenberg model,
which in turn has a conjectured z ¼ 1 [18,41]. This
suggests an effective dimension deff ¼ 2þ 1 ¼ 3 [42].
The Hamiltonian of the PAM reads

H ¼
X

k;σ

εkd
†
kσdkσ þ εf

X

iσ

f†iσfiσ

þ U
X

i

nf;i↑nf;i↓ þ V
X

i;σ

½d†iσfiσ þ f†iσdiσ�: ð1Þ

It consists of localized f electrons with creation (annihi-
lation) operators f†iσ (fiσ), nf;iσ ¼ f†iσfiσ , interacting
through a local Coulomb repulsion U and with a local
one-particle potential εf. Further, there are itinerant d†iσ
(diσ) electrons with a nearest neighbor hopping t, or a
corresponding energy-momentum dispersion relation
εk ¼ −2t½cosðkxÞ þ cosðkyÞ�. Finally, there is a hybridiza-
tion V between both kinds of electrons. In the presented
calculations, we fix U ¼ 4t (intermediate-to-strong cou-
pling). We consider the half-filled case εf ¼ −U=2, for
which the PAM maps onto the Kondo lattice model with a
coupling J ¼ 8V2=U in the limit U ≫ V. That is, for large
U, the f electrons form localized spins. This Kondo lattice
model shows the famous Doniach [43] T-V phase diagram,
with two competing phases.
On the one hand, there is the Kondo effect [44]: the

spins, that are free at high T with a Curie susceptibility
χ ∼ T−1 get screened below the Kondo temperature TK . In
this case, a Kondo resonance forms at the Fermi level. In
our particle-hole symmetric case of half filling, this Kondo
resonance is however gapped. This can be understood
starting from the noninteracting model (U ¼ 0): the flat f
band at the Fermi energy EF hybridizes with the dispersive
conduction d band so that a hybridization gap opens at EF.
That is, we have a band insulator and for a finite U a
quasiparticle-(Kondo-)renormalized picture thereof, i.e., a
Kondo insulator. For the (single-site) Kondo model

TK ∼ e−ð1=ρ0JÞ; ð2Þ

where ρ0 is the noninteracting density of states of the
conduction electrons at the Fermi level [44,45]. For the
PAM we get a similar, somewhat enhanced TK [45,52].
Competing with the Kondo effect is a magnetic phase,

which can be understood as the effective Ruderman-Kittel-
Kasuya-Yosida (RKKY) coupling between f-electron spins
through the conduction electrons. In second order pertur-
bation theory in J, the coupling strength and hence the
critical temperature is

TRKKY ¼ 1

4
J2χω¼0

0;Q ; ð3Þ

where χ0 is the (noninteracting; V ¼ 0) susceptibility of the
conduction electrons and the factor 1=4 ¼ SðSþ 1Þ=3 for
spin S ¼ 1=2 corresponds to the mean-field critical temper-
ature. In our case, the maximal coupling appears at the
antiferromagnetic (AF) wave vector Q ¼ ðπ; πÞ. An AF
ordering opens a gap, so that we obtain an AF insulator.
Since TK is exponentially small for small J [43], TRKKY
prevails for small J, whereas at large J the Kondo effect
wins. Hence, there is a phase transition from an AF to a
Kondo insulator at TK ≈ TRKKY. Hence, the ground state is
always insulating. At high temperatures, the f electrons are
also gapped and form free spins, but the conducting
electrons are itinerant; at T ≳ TK the Kondo peak starts
to develop but the Kondo insulating gap that is present at
lower Ts is still smeared out due to strong scattering.
Phase diagram.—Figure 2 presents the actual phase

diagram of the PAM as calculated using DMFT and DΓA.
Here, we employ the ladder DΓA with Moriya-λ correction
[53] which generates spin fluctuations starting from the
local vertex Γ calculated for a converged DMFT solution;
for further details on the method, we refer the reader to
Refs. [35,54–57]. For the DMFT phase diagram of the
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Kondo lattice model (and including short-ranged correla-
tions), cf. Refs. [58–60].
Let us start with the DMFT results, which show AF order

at small V in the light-green shaded region of Fig. 2. This
order breaks down as the Kondo effect sets in and a QCP
emerges: there is a T ¼ 0 phase transition. As we see, the
perturbative result, TRKKY ∼ J2 ∼ V4 (yellow line), only
holds for small V; for larger Vs DMFT yields a smaller AF
transition temperature due to temporal correlations (green
line). As we see the AF order breaks down when the DMFT
Kondo temperature (blue line, determined from the maxi-
mum of the local susceptibility as a function of T) becomes
of similar amplitude as the DMFT Néel temperature
(green line).
The DΓA phase diagram in Fig. 2 is distinctively

different. Concomitant with the Mermin-Wagner theorem
[61], AF order is only found at T ¼ 0 because of strong
nonlocal fluctuations in d ¼ 2, cf. Ref. [26] for DΓA
fulfilling the Mermin-Wagner theorem for the 2d
Hubbard model. Nonetheless, we have AF order along
the red line in Figs. 1 and 2, and hence, at T ¼ 0, a QCP
develops at VQCP ≈ 0.91t.
Quantum critical region.—Above this QCP region we

expect a quantum critical region as visualized in Fig. 1,
with non-Gaussian fluctuations. Hence, we study the AF
susceptibility χ ¼ χω¼0

Q at momentum Q ¼ ðπ; πÞ and its
critical behavior around the critical VQCP in Fig. 3. In
DMFT, χ ∼ ðT − TNÞ−γ ∼ ðT − TNÞ−1; see Fig. 3 (upper
panels) so that we have a critical exponent γ ¼ 1. This
reflects the (bosonic) mean-field critical behavior of DMFT
which neglects spatial fluctuations. At high temperatures, it
smoothly evolves into the Curie susceptibility χ ∼ T−1 of
free spins.
In DΓA, Fig. 3 (lower panels), we observe a completely

different behavior. While at high T, we have the same γ ¼ 1

Curie behavior, there is a crossover to χ ∼ T−2, i.e., a
quantum critical exponent γ ¼ 2 at lower Ts. This critical

exponent and the related correlation length ξ ∼ T−ν ∼ T−1

agree with the conjectured mapping onto a nonlinear σ
model [18,62], which also displays antiferromagnetic
ordering within an insulating phase (as we have) with a
dynamical critical exponent z ¼ 1 and yields the same ξ ∼
1=T in the quantum critical regime. This yields the critical
exponent ν ¼ 1 for the correlation length, which happens to
be the same critical exponent that one gets if setting the
correlation length in time to its cutoff ξτ ∼ 1=T and
accepting that z ¼ 1. With the Fisher relation γ=ν ¼
2 − η [63], γ ≈ 2 for the susceptibility as observed in
Fig. 3 (note that, typically, η is vanishingly small even
in d ¼ 2). In the Supplemental Material, Sec. S3 [45], we
present an explanation for this critical exponent on the basis
of a sum rule .
With increasing dimensionality, we expect the critical

exponents at d ≥ 3 approach their values in HMM theory
[45]. Computing quantum critical exponents of strongly
correlated electron models such as the PAM was, however,
not possible hitherto; quantum Monte Carlo simulations
and cluster extensions of DMFT are restricted to too short-
ranged correlations.
At the lowest T, deviations from this quantum critical

behavior are discernible in Fig. 3 (lower panels) and are to
be expected as we leave the cone-shaped quantum critical
region in Fig. 1. For V < VQCP, eventually antiferromag-
netic order sets in at T ¼ 0. Already at finite Ts, an
exponential increase of the correlation length and the
susceptibility with 1=T is to be expected [62]. A similar
exponential scaling was observed for the Hubbard model
[64]. Consistently with this description, one observes a
deviation to even larger susceptibilities at V ≪ VQCP and
lowest Ts in Fig. 3. For low T and V > VQCP, on the other
hand, eventually a Kondo insulating phase develops
(quantum disordered phase in Fig. 1). For this (renormal-
ized) band insulator, one has χ → 0 for T → 0. In agree-
ment with this, Fig. 3 shows a deviation to smaller
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susceptibilities at lower Ts; a full suppression of the
susceptibility because of the Kondo gap will only occur
at larger V in the accessible T range.
An intriguing, nonuniversal aspect is the strong enhance-

ment of the susceptibility in the crossover regimebetween the
χ ∼ 1=T and χ ∼ 1=T2 behavior, in particular atV ¼ 0.9 and
V ¼ 0.91 in Fig. 3. This originates from enhanced anti-
ferromagnetic correlations, which for the periodic Anderson
model set in somewhat aboveTDMFT (see green line in Fig. 3)
and then crossover to the quantum critical χ ∼ 1=T2 region,
however with a much larger quantum critical susceptibility
(prefactor thereof) than for a Heisenberg model with the
exchange interaction providing the same mean-field tran-
sition temperature. For a more detailed discussion, see the
Supplemental Material, Sec. S.4 [45].
Altogether our results yield the quantum critical region

schematically presented in Fig. 1, where we have also
inserted the actual V values employed in our calculation,
along with the observed exponents of the T dependence of
the susceptibility.
Uniform susceptibility.—Let us now turn to the (uni-

form) susceptibility, i.e., χω¼0
Q at momentum Q ¼ ð0; 0Þ,

which has the advantage that it can be measured more
directly in experiment. Its T dependence around VQCP is
displayed in Fig. 4. At large T it shows, similar as the
antiferromagnetic χ, the 1=T Curie behavior of free spins.
However, as the spins get screened through the Kondo
effect, the ferromagnetic susceptibility shows a maximum
around the TK of Fig. 4, whereas the antiferromagnetic
susceptibility in Fig. 3 further grows, signaling the insta-
bility toward AF. Below this maximum, the ferromagnetic
susceptibility χω¼0

Q¼ð0;0Þ shows essentially in a T-linear

behavior in the quantum critical region. Such a behavior
has also been reported for a nonlinear σ model and 1=N
calculations [18].
Conclusion.—Thanks to an advanced many-body

method, the DΓA, we are finally able to study the phase
diagram and even the quantum critical behavior of the
PAM, the prime model for heavy fermions, in d ¼ 2.
We find antiferromagnetic order for small hybridizations
V < VQCP at T ¼ 0, consistent with the Mermin-Wagner
theorem in DΓA. In DMFT, antiferromagnetism breaks
down when the Kondo temperature TK exceeds the Néel
temperature TN , as in the Doniach scenario, giving rise to a
QCP. While TN ¼ 0 in DΓA, we still get a comparable

VQCP, which is 25% smaller in DΓA than in DMFT as the
latter neglects nonlocal spin fluctuations.
We identify a quantum critical region with critical expo-

nents ν ¼ 1 for the correlation length and γ ¼ 2 for the
antiferromagnetic susceptibility, as displayed in Fig. 1,
whereas the uniform susceptibility shows a noncritical
linear-T dependence. Above the quantum critical region,
we observe free spins with γ ¼ 1 at high T, while at small T,
the AF susceptibility is exponentially enhanced in the
thermally disordered region V < VQCP and suppressed in
the quantumdisordered, Kondo insulating regionV > VQCP.
Our work opens a route for studying quantum criticality

in various models, which was hitherto only possible for
spin models but not for correlated electrons. This removes a
blank spot on the map of quantum critical theories, which
bear many sophisticated quantum field theoretical consid-
erations, analytical arguments, and derivations, but few
means to test these numerically in a reliable way.
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