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Obtaining an accurate ground state wave function is one of the great challenges in the quantum many-body
problem. In this Letter, we propose a new class of wave functions, neural network backflow (NNB). The
backflow approach, pioneered originally by Feynman and Cohen [Phys. Rev. 102, 1189 (1956)], adds
correlation to a mean-field ground state by transforming the single-particle orbitals in a configuration-
dependent way. NNB uses a feed-forward neural network to learn the optimal transformation via variational
Monte Carlo calculations. NNB directly dresses a mean-field state, can be systematically improved, and
directly alters the sign structure of thewave function. It generalizes the standard backflow [L. F. Tocchio et al.,
Phys. Rev. B 78, 041101(R) (2008)], which we show how to explicitly represent as a NNB.We benchmark the
NNB on Hubbard models at intermediate doping, finding that it significantly decreases the relative error,
restores the symmetry of both observables and single-particle orbitals, and decreases the double-occupancy
density. Finally, we illustrate interesting patterns in the weights and bias of the optimized neural network.
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Introduction.—A key question in strongly correlated
quantum systems is to obtain an approximation for the
ground state wave function. This is especially important for
Fermion systems in two or more dimensions where only
approximate or exponentially costly methods for evaluating
observables of quantum systems exist. Early attempts for
writing down variational Fermion wave functions, such as
Slater determinants [1] and BCS wave functions [2],
focused on finding the ground state of a mean field
Hamiltonian that best matched the interacting ground state.
Since these early attempts, more sophisticated wave func-
tions have been developed that dress these mean-field
starting points, including Slater Jastrow [3,4], Slater
Jastrow backflow [5–7], and iterative backflow [8], which
has recently been described as a nonlinear network [9].
These wave functions have the advantage that the mean-
field starting point can directly incorporate the basic
physics of the problem.
Instead of starting from a dressed mean field, many other

classes of wave functions are parametrized by a tuning
parameterD, which interpolates from a trivial state at small
D to a universal wave function spanning the entire Hilbert
space at an exponentialD. Examples of suchwave functions
include matrix-product states [10,11], other forms of tensor
networks [11–13], Huse-Elser states [14–16], and string-
bond states [17]. Recently, wave functions based on neural
network primitives, such as restricted Boltzmann machines
(RBM) and feed forward neural network (FNN), have been
introduced with similar universal properties [18–42]: as the
number of hidden neurons increases, the neural network
state can represent all probability distribution, although this

may require complex weights to represent the sign structure
of Fermion wave functions. A recent attempt to incorporate
RBM into Fermion states by using the RBM as a more
general Jastrow [23] shows promise, but was still restricted
to the sign structure of the underlying mean-field Ansatz.
Even though general neural networks could alter the sign
structure, it may struggle with capturing the underlying
mean-field physics both in terms of the number of neurons
required as well as optimization.
In this Letter, we propose a new class of wave functions,

the neural network backflow (NNB), which dresses a
mean-field wave function, can make changes to the sign
structure directly, and can be systematically improved by
increasing the number of hidden neurons and is able to be
made theoretically exact in the limit of enough neurons. To
accomplish this we use a feed-forward neural network
(FNN), not in the standard approach of returning a wave
function amplitude, but instead to transform the single
particle orbitals in a configuration dependent way; these
orbitals are then used in the mean-field wave function.
Wave functions with configuration-dependent orbitals are
known as a backflow wave function [5–9,43–55].
Background.—Mean field theory—approximating the

ground state of a quartic Hamiltonian by the ground state,
ψMF, of a quadratic Hamiltonian—is a powerful first step to
understanding correlated quantum systems. Various mean
fields lead to different types of ground states including
Slater determinants,

ψSDðrÞ ¼ det½MSD;↑� det½MSD;↓�; ð1Þ
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MSD;σ
ik ¼ ϕkσðriσÞ ð2Þ

and Bogoliubov–de Gennes wave functions,

ψBDGðrÞ ¼ det½Φ� ð3Þ

Φij ¼
XN

k;l¼1

ϕk↑ðri;↑ÞSklϕl↓ðrj;↓Þ; ð4Þ

where ϕkσ is the kth single particle orbital and ri;σ is the
position of the ith particle of spin σ. Equation (1) only takes
the occupied orbitals, while Eq. (3) is summed over both
occupied and unoccupied orbitals.
Mean field states are uncorrelated by construction.

The simplest way to capture correlation physics is
through the introduction of a Jastrow giving ψ JastrowðrÞ ¼
exp½−UðrÞ�ψMFðrÞ, where UðrÞ is an arbitrary function. In
this Letter, we always use a charge Jastrow UðrÞ ¼
1
2

P
i;jvijninj, where ni is the charge density, and vij is

the variational parameters. While Jastrow factors can
introduce many-body correlations, they can’t modify the
mean field’s sign structure. One approach to add additional
sign-structure modifying correlation is through a backflow
correction [6–9,43–55], which introduces correlations by
having the single-particle orbitals act on a configuration-
dependent quasiparticle position. On the lattice, the back-
flow approach instead uses a configuration-dependent
mean field [6,44,45,47]—i.e., the quadratic Hamiltonian
or single-particle orbitals ϕb

k;σðri; rÞ depend not only on the
position ri but on all other electron positions r; our NNB
builds on top of this formulation of backflow.
Neural network backflow.—The NNB uses a FNN to

modify the single particle orbitals for a spin σ,

ϕb
kσðri;σ; rÞ ¼ ϕkσðri;σÞ þ aNNki;σðrÞ; ð5Þ

where each value of aNN
ij;σ is represented by an output neuron

of the FNN. We use one neural net for each of σ ∈ f↑;↓g.
This is to be contrasted with the standard backflow [44]
parametrization,

ϕb
kσðri;σ; rÞ ¼ ϕkσ þ

X

j

ηij;σϕkσðrj;σÞ

ηij;σ ¼ tDiHjθji−jj;σ; ð6Þ

with Di ¼ ni;↑ni;↓, Hi ¼ ð1 − ni;↑Þð1 − ni;↓Þ. θ1;σ and θ2;σ
are the only nonzero variational parameters.
Interestingly, the backflow transformation of Eq. (6) can

be represented as a neural network for aNNij;σðrÞ with three
hidden layers and a linear number of neurons; an explicit
construction will be given in the next section. This ensures
that there exists a three layer neural network, which is at
least as good as the standard backflow transformation.

We consider two NNB wave functions, ΨSN and ΨPN,
implemented on top of a Slater Determinant and BCS
pairing wave functions, respectively. The neural nets used
in these wave functions are similar, although ΨSN has
outputs that only correspond to the occupied orbitals, while
the outputs of ΨPN correspond to all the orbitals. In
addition, for ΨSN there are only two neural nets (one for
each of the spin-up and spin-down orbitals), while for ΨPN
there is an additional neural net used to generate a system
dependent SklðrÞ. This is implemented by letting SklðrÞ ¼
Skl þ dNNkl ðrÞ, where dNNkl ðrÞ is represented by an FNN
(which in this Letter is always fixed to 16 hidden neurons)
that inputs the system configuration r and outputs the
symmetric matrix correction dNNkl . Notice that ΨPN is
trivially a superset of ΨSN.
Although various architectures can be used, we adopt a

three-layer fully connected FNN for each of the functions
aNNki;σ and dNNkl (see Fig. 1). The input layer has 2N neurons
with neuron i (neuron iþ N) outputting 1 if there is spin up
(spin down) on site i and −1 otherwise, where N is the total
system size. The hidden layer contains mN hidden neurons
for constant m with rectifier linear units (ReLU) [56]
activation functions. The output layer then contains
OðN2Þ neurons specifying the values of the respective
functions. Gradients are computed in the standard way
using variational Monte Carlo calculations (see
Supplemental Material [57] Sec. II), which requires evalu-
ating the derivative of the wave function with respect to the
weights and bias in the neural network. Derivatives for
FNN are typically taken using back propagation. Because
the wave function is a determinant of a matrix generated by
the neural-network output, we evaluate this full derivative
by envisioning this determinant as an additional final layer

1

1

-1

1

-1

1

sp
in

-u
p

sp
in

-d
o

w
n

transformation to 
orbitals

FIG. 1. Cartoon of (spin-up) neural network being used in this
work for aNN (other transformations are similar) with input
shown for the configuration displayed for four electrons on three
sites. Every layer is fully connected with arrows, but only a
fraction of them are shown for image clarity. The input layer is set
by the configuration. Parameters bj and wij are bias and weights
to be optimized. The output layer is a nup-electrons × nsites (i.e.,
2 × 3) matrix, which will be the backflow transformation added
to the single particle orbitals.
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of the neural network and then performing back propaga-
tion including this layer. This ensures that the cost of
computing all the derivatives is of the same order as the
evaluation of the wave function (see Supplemental Material
[57] Sec. III). Optimization is performed by stepping each
parameter in the direction of the gradient with a random
magnitude, which helps us avoid shallow local minima
[58], or by the RMSPROP method [59].
The computational complexity of the NNB implemented

with a single layer of OðmNÞ hidden neurons scales as
OðmN4Þ per sweep (i.e., after N electrons move) for
forward and backward propagation and OðN4Þ per sweep
for the evaluation of the mean-field determinant. This is
similar to the scaling of standard backflow.
Explicit construction of standard backflow.—In this

section, we provide an explicit construction that represents
the standard backflow transformation in the form of Eq. (6)
written as a NNB.
In Eq. (6), ηij;σ ¼ tDiHjθji−jj;σ ¼ tni;↑ni;↓hj;↑hj;↓θji−jj;σ,

where hj;σ ¼ 1 − nj;σ, and θ1;σ and θ2;σ are the only
nonzero variational parameters. We first demonstrate that
ηij;σ can be presented by a two layer neural network with
input layer as ðσ1;…; σN; σNþ1;…; σ2NÞ where σi ¼
2ni;↑ − 1 and σiþN ¼ 2ni;↓ − 1. By construction, ni;σ and
hj;σ take a value of 0 or 1 so that ni;↑ni;↓hj;↑hj;↓ is 1 if and
only if ni;↑¼ni;↓¼hj;↑¼hj;↓¼1. Therefore, tθji−jj;σDiHj ¼
tθji−jj;σni;↑ni;↓hj;↑hj;↓ is equivalent to ReLU½tθji−jj;σðni;↑þ
ni;↓ þ hj;↑ þ hj;↓ − 3Þ�, which is the same as
ReLU½tθji−jj;σðσi=2þ σiþN=2 − σj=2 − σjþN=2 − 1Þ�. As
a result, for each ηij;σ, we associate it with a hidden
neuron, such that the weights connecting it to σi,
σiþN; σj; σjþN are tθji−jj;σ=2; tθji−jj;σ=2;−tθji−jj;σ=2;
−tθji−jj;σ=2, respectively, the bias is −tθji−jj;σ, and the
activation function is ReLU. In general, for more compli-
cated backflow [6,45,47] with terms ni;σhi;−σnj;−σhj;σ ,
ni;σni;−σnj;−σhj;σ , and ni;σhi;−σhj;σhj;−σ, where σ is the spin
index, we can use more hidden neurons and represent it in
the same way.
After we have the neural network construction for the

standard ηij;σ, the term aNNki ¼ P
jηij;σϕkσðrj;σÞ in Eq. (5)

can be realized through an extra layer taking the outputs
ηij;σ to a neuron representing aki; where the weight is given
by the single particle orbital values ϕkσðrj;σÞ, there is no
bias and the activation function is the identity. This

construction shows that the standard backflow parameter-
ization is thus a subset of our three-layer NNB.
Results.—We have benchmarked the quality of our NNB

on a number of systems including Hubbard models at
various sizes and doping (all at U=t ¼ 8) as well as a
frustrated magnet, the Heisenberg model on the Kagome
lattice. In the main text we focus primarily on the Hubbard
model at n ¼ 0.875 (primarily on the 4 × 4 lattice) leaving
the additional benchmarks as Supplemental Material [57]
(Sec. IV., [60–62]) The Hubbard Hamiltonian is

H ¼ −t
X

iσ

ðc†iσciþ1σ þ H:c:Þ þ
X

i

Uni↑ni↓; ð7Þ

where we use U=t ¼ 8. We compare the results to an
optimized unrestricted (i.e., different single particle orbitals
for spin up and spin down) Slater determinant (ΨS0) as well
as a backflow BDG wave function (ΨPB), which transforms
the single particle orbitals of each spin by Eq. (6). The
formulation and the variational parameters of each wave
function Ansatz are summarized in Table I. The parameters
that aren’t optimized, such as the initial set of orbitals
fϕkσðri;σÞg are obtained for ΨPB and ΨSN by optimizing a
restricted Slater-Jastrow wave function while ΨPN uses
orbitals taken from the free hopping Hamiltonian (in
practice the nature of the neural net allows for a direct
change to the orbitals by altering the bias on the final layer).
The relative error of the energy of NNB is 1.4% and

0.66% after variance extrapolation (see Supplementary
Material [57] Sec. I), which is significantly better
then the standard wave functions [see Fig. 2(left)]. We
examine the effect of the number of hidden neurons mN
[see Fig. 2(right)]. We find that at a small hidden neuron
number, ΨPN is much better than ΨSN, but this advantage
eventually largely disappears at a large neuron number,
suggesting that a backflow parametrized with small neural
networks can compensate for the missing pairing in a Slater
determinant. Surprisingly, in the regime we’ve probed, both
NNB have energies linear with respect to 1=m in spite of
the fact that in the m → ∞ limit, they both must become
exact as the FNN could simply put the exact amplitude
ΨðRÞ on one element of the diagonal [63], one on the rest of
the diagonal, and zero everywhere else.
In addition, we have studied the NNB at 4 × L for L ¼

f4; 8; 12; 16g comparing against the DMRG energy (PBC,
open) for the 4 ×∞ system of −0.7659� 4 × 10−5 per site

TABLE I. Wave function Ansätze

Method Backflow transformation Mean field Variational functions

ψS0 not applicable Eq. (1) ϕk↑ðri;↑Þ,ϕk↓ðri;↓Þ,vij
ΨSN ϕb

kσðri;σ ; rÞ ¼ ϕkσðri;σÞ þ aNNki;σðrÞ Eq. (1) aNNki;σðrÞ,vij
ΨPB ϕb

kσðri;σ ; rÞ ¼ ϕkσðri;σÞ þ θ1σ
P

jtDiHjϕkσðrj;σÞ þ θ2σ
P

jtDiHjϕkσðrj;σÞ Eq. (3) θ1σ ,θ2σ ,Skl,vij
ΨPN ϕb

kσðri;σ ; rÞ ¼ ϕkσðri;σÞ þ aNNki;σðrÞ; SklðrÞ ¼ Skl þ dNNkl ðrÞ Eq. (3) aNNki;σðrÞ,dNNkl ðrÞ,vij
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[65].We find our result very comparable [see Fig. 2(bottom)]
to the DMRG result, especially for system sizes that are
commensurate with a wavelength of eight stripes [65].
We also investigate how the neural network backflow

wave function affects the observables of our system.We see
the expectation of double occupancy decreases as 1=m (see
Supplemental Material [57] Sec. I), and the spin and charge
densities become significantly more symmetric as the
number of hidden neurons increases (see Fig. 3).
To understand the role of neural network in back-

flow transformation, we investigate how the neural network
backflow transformation modify the orbitals. In
Fig. 4(right), we notice that, although the backflow trans-
formation on spin-up orbitals and spin-down orbitals are
performed by two different neural networks, they produce

similar backflow transformed orbitals and roughly preserve
the symmetry of spin up and spin down for a given
configuration. This is different from the optimized
unrestricted Slater determinant ΨS0, which breaks the
spin-up and spin-down symmetry significantly [see
Fig. 4(left)].
One feature of using a NNB is the ability to alter the sign

structure of the wave function. Here we consider the
amount the sign changes between ΨSN with 16 hidden
neurons and ΨS0 by evaluating the integral

R jΨS0ðxÞj2sgn(ΨSNðxÞ)sgn(ΨS0ðxÞ)dxR jΨS0ðxÞj2dx
; ð8Þ

which is approximately 0.815, giving a 9% difference
between the signs.

FIG. 2. Top left: Percentage relative error from the exact
ground-state energy of Eq. (7) (E ¼ −11.868 [64]) on 4 × 4
Hubbard model at U=t ¼ 8; n ¼ 0.875, for various classes of
wave functions. The star is the variance extrapolation result of
ΨPN (see Supplemental Material [57] Sec. I). Top right: Percent-
age relative energy error, ðEexact − ENNBÞ=Eexact × 100%, as a
function of 1=m for NNB. Statistical error bars are shown, but are
smaller than the marker size. Bottom: Variance extrapolated
energy per site for Hubbard model with U=t ¼ 8; n ¼ 0.875 with
system size L × 4 for L ¼ 4, 8, 12, 16. The dash line is the
DMRG energy per site (−0.7659� 4 × 10−5) for system size
∞ × 4 (PBC, open) [65].

FIG. 3. Charge density (top) and spin density (bottom) from
ΨPN with 8 hidden neurons (left) and 128 hidden neurons (right)
on 4 × 4 Hubbard model at U=t ¼ 8; n ¼ 0.875.

FIG. 4. Spin-up (top) and spin-down (bottom) single particle
orbital (s.p.o.) for ΨS0 (left) and ΨSN (right) with 256 hidden
neurons on 4 × 4 Hubbard model at U=t ¼ 8; n ¼ 0.875, where
the s.p.o.s are evaluated at the (1D reshaped) spin-configuration
shown. For the s.p.o., row is orbital index and the column is
position index.
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Furthermore, we open up the ΨSN neural network for
m ¼ 8 and analyze the weight between the input layer and
the hidden layer, which represents the features that the
neural network learns from input. In Fig. 5, we plot these
weights for both the spin-up and spin-down neural net-
works. Interestingly the spin-up neural network primarily
has large weights connected to the spin-down configura-
tions, while the spin-down neural network primarily has
large weights connected to the spin-up configurations. This
allows the neural network to introduce correlation between
spin-up and spin-down configurations. Another observa-
tion is that more neurons tend to take a large weight in
negative bias, and a small weight in positive bias.
Conclusion.—In this Letter, we utilize the generality of

artificial neural networks and the physical insight from
backflow to develop a new class of wave function Ansatz,
the neural network backflow wave function, for strongly
correlated Fermion systems on lattice. It achieves good
performance for Hubbard model at nontrivial filling. We
also show improvement on a kagome Heisenberg model in
the supplement. While this Letter has focused on a Fermion
system on the lattice, the NNB is straightforward to
generalize to frustrated spin systems as well as the
continuum. In the latter case, the input could be represented
as a lexicographically ordered set of particle locations. Our

Letter provides a new approach toward combining machine
learning methodology with dressed mean-field variational
wave functions, which allows us to take simultaneous
advantage of their respective strengths.
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