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Realistic finite temperature simulations of matter are a formidable challenge for first principles methods.
Long simulation times and large length scales are required, demanding years of computing time. Here we
present an on-the-fly machine learning scheme that generates force fields automatically during molecular
dynamics simulations. This opens up the required time and length scales, while retaining the distinctive
chemical precision of first principlesmethods andminimizing the need for human intervention. Themethod is
widely applicable to multielement complex systems. We demonstrate its predictive power on the entropy
driven phase transitions of hybrid perovskites, which have never been accurately described in simulations.
Using machine learned potentials, isothermal-isobaric simulations give direct insight into the underlying
microscopic mechanisms. Finally, we relate the phase transition temperatures of different perovskites to the
radii of the involved species, and we determine the order of the transitions in Landau theory.
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Predicting the finite temperature properties of materials
from first principles (FP) has always been a dream of
materials scientists but it has hardly been achieved except
for the simplest of solids. The main obstacle is that the
required system sizes and simulation times are simply not
attainable using standard FP techniques. Training force fields
using machine learning (ML) techniques is an obvious
solution to the problem. However, what has prevented ML
from being widely applied is the construction of suitable
reference structures. In conventional approaches [1,2],
training structures are selected using chemical intuition,
FP calculations are performed for them, andmachine-learned
force fields (MLFF) are fitted. Later, when the user realizes
that structures outside the present training set need to be
included, additional structures are added, and the force field
is retrained. This is a time-consuming trial and error process
often taking months for a single material, and it is practically
untraceable for multielemental complex materials. On-the-
fly machine learning has been suggested as an alternative
possibly reducing human intervention [3,4]. The prime
progress in the present work is that the predicted
(Bayesian) error is used to decide whether FP calculations
are required or can be bypassed. We put our generally
applicable algorithm to the test by applying it to a puzzling
material exhibiting very fast hydrogen dynamics, as well as
very slow rotational dynamics. The on-the-fly ML allows
us to predict phase diagrams with FP quality, with so far
unprecedented efficiency.
We have chosen hybrid perovskites as a first application

of our scheme, because the slow rotational dynamics of the
molecules makes straightforward FP molecular dynamics

exceedingly time consuming. Furthermore, hybrid perov-
skites possess a huge scientific and technological potential.
Methylammonium ðMAÞPbI3 is a promising solar cell
material [5–7] with a high charge-carrier mobility [8].
Many experimental and theoretical studies have been
performed on its atomic structure and dynamical properties
[9–22] and they have revealed that experimentally this
material exhibits two entropy-driven phase transitions from
an orthorhombic to a tetragonal phase at 160 K, and from
a tetragonal to a cubic phase at 330 K. Estimates of the
transition temperatures from FP have not been reported to
date and are elusive to be obtained using standard FP
techniques alone, owing to the fact that the transitions are
entropy driven. Although in the orthorhombic phase the
molecules and the cage are essentially frozen, in the cubic
phase the MA molecules and the cage reorient, rapidly
exploring a large phase space. Moreover, recent theoretical
studies [22] indicate that the available semiempirical force
fields are not accurate and that only few fairly expensive
density functionals describe the instabilities of the cage and
the interaction between the molecules and the cage with
sufficient accuracy [21].
For the description of the machine learned potential

energy surface, we use a variant of the Gaussian approxi-
mation potential (GAP) pioneered by Bartók and co-
workers [2]. In GAP, the potential energy U of a system
with Na atoms is described as a summation of local atomic
potential energies Ui,

U ¼
XNa

i¼1

Ui ¼
XNa

i¼1

XNB

iB¼1

wiBKðXi;XiBÞ: ð1Þ
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Each Ui is expressed as a linear combination of the kernel
function KðXi;XiBÞ and weight factors wiB . The kernel
measures the similarity between the local configuration
around atom i and the reference local configuration iB.
For the descriptorXi and the kernelK, we adopted a variant
of the smooth overlap of atomic positions (SOAP)[23]
(see Supplemental Material [24]). Equation (1) allows us to
describe the energy, forces, and stress tensor (EFS) for a
given structure as ϕw. Here, w ¼ fwiBg and ϕ is a matrix
containing KðXi;XiBÞ and its derivatives with respect to
the coordinates and lattice vectors. Similarly, the EFSs on
all training structures can be summarized as Φw, where Φ
collects ϕ for all training structures. The parameters w and
the uncertainty σ in the predicted EFS are simultaneously
determined to reproduce the FP EFSs using the Bayesian
theorem [44] as

w ¼ ½I=σ2w þΦTΦ=σ2v�−1ΦTY=σ2v; ð2Þ

σ ¼ σ2vIþ ϕT ½I=σ2w þΦTΦ=σ2v�−1ϕ: ð3Þ

The FP data of the training structures enter in the vector
Y. I is the identity matrix. The parameters σ2v and σ2w are
determined to balance the accuracy and robustness of the
MLFF using the evidence approximation [44]. The on-the-
fly scheme has been integrated within the VASP code
[45,46] (Sec. A in Supplemental Material [24]).
The actual training was performed using a state-of-the-

art metagradient corrected functional [47] and running
extensive FP simulations in all three experimentally known
phases using 2 × 2 × 2 unit cells [24]. To determine
whether FP calculations are required, the Bayesian error
Eq. (3) is used (see Fig. 1). If the error is above a certain

threshold, adjusted also on the fly, FP calculations are
performed as indicated by the white circles. The FP data are
used to refine the force field at the MD steps shown as black
dots. In this manner, if the system stays in a local minimum,
most FP calculations are bypassed, but after reordering of
the PbI cage or the MA molecules FP calculations are
performed as illustrated in Fig. 1. The efficiency of the on-
the-fly learning is demonstrated by the fact that during the
training 99% of the FP calculations are skipped, reducing
the computational time by almost a factor of 100 even
during learning. This enables us to extensively explore the
phase space involving slow molecular reorientations in the
PbI3 framework occurring on a ps timescale. The generated
regression model predicts energies, forces, and stress tensors
with near-FP quality of 2.6 meV=atom, 0.07 eV=Å, and
0.82 kbar, respectively (Sec. C in the Supplemental
Material [24]).
In Fig. 2(a), we show the simulated lattice constants of

MAPbI3 as a function of the temperature and compare them
with experiment [14]. For this simulation 4 × 4 × 4 unit
cells were used (for determination of lattice constants see
Sec. D in the Supplemental Material [24]). The constructed
force field accurately reproduces the structure of all three
phases. An analysis on the tetragonal distortion ðc − aÞ=c
shown in Fig. 2(b) allows us to pinpoint the tetragonal to
cubic phase transition temperature at 353 K. The critical
exponent of 0.24 agrees well with the reported experimen-
tal results of 0.22–0.285 [14] and a theoretically expected
value of 1=4 for a tricritical point on the basis of Landau
theory. A careful free energy “umbrella sampling” [48]
analysis (details in the Supplemental Material [24]) was
used to determine the transition temperature of 215� 10 K
between the orthorhombic and tetragonal phase.
Furthermore, for the orthorhombic to tetragonal transition,
the change of the entropy at this phase transition is 1.3�
0.6 kB per MA molecule agreeing reasonably with the
experimental value of 2.3 kB [10]. The theoretical results
compare well with the available experimental data and are
in essence only limited by the accuracy of the density
functional.
Contrary to experiment, our simulations readily provide

atomic-scale insight into the entropy-driven phase transi-
tions. As a first step, we have analyzed the orientation of the
molecular C─N axis. Figure 2(c) shows three-dimensional
polar plots of the probability distribution of the molecular
orientation in the PbI3 framework at 200–400 K. In the
orthorhombic phase at 200 K, the polar distribution exhibits
two specific orientations predominantly along the x or y
axis. In this phase the molecules are frozen, and their
orientation alternates only spatially. In the tetragonal phase
at 250 K, the molecules are also canting in the þz and −z
direction out of the xy plane, so that eight lobes are visible.
It should be noted that our previous FP MD simulations did
not describe the molecular order in the tetragonal phase
accurately at lower temperatures either because of the short

FIG. 1. The error in the force field during the first picosecond of
the on-the-fly simulation. The predicted (Bayesian) error for the
unitless force [provided by Eq. (3)] closely resembles the real
error. A part of the structure at 0 and 0.24 ps is shown on top. The
hydrogen atom that exhibits the largest real and predicted errors at
0.24 ps is drawn as a red sphere, and the H─I bonds shorter than
3.6 Å as red-gray lines. The simulation is executed on MAPbI3
at 450 K.
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simulation time or the fixed volume [21]. In the present
simulations, at 250 K the short range molecular order is
consistent with the order shown in the snapshot of Fig. 2(d)
for the tetragonal phase. Between 300 and 350 K a spherical
probability distribution gradually develops, indicating that
the molecules continuously obtain additional rotational
freedom close to the tetragonal to cubic phase transition.
In the cubic phase at 400 K, the molecules realize a nearly
free rotation, whereas in the tetragonal phase, the molecules
exhibit hindered reorientations. Specifically, at 350 K we
predict a reorientation rate of 6.4 ps (Sec. F in the
Supplemental Material [24]) agreeing well with the exper-
imental results of 1.0–5.4 ps at 300–350 K [10,15,17].
To obtain more insight on the atomic scale mechanism

of the phase transitions, we performed simulations on 4 ×
4 × 4 unit cells using a slow heating rate of 0.5 K=ps. Even
with state-of-the-art massively parallel computers such a
simulation would take several years using FP techniques
alone. To unravel the microscopic mechanism of the phase
transition, we introduce order parameters denoted as O
(octahedron) and M (molecular) as sketched in Fig. 3(b).
The vector O measures the angular correlation between
adjacent PbI6 octahedra along the x, y, and z axis and
resolves the ordering of the frame. Ox, for example,
approaches unity when adjacent octahedra along the x axis
are tilted in the same direction, while it approaches zero
when adjacent octahedra are tilted oppositely. Similarly, the
vector M measures the angular correlation between adja-
cent MA molecules and resolves the molecular order [24].
Figure 3(b) shows that below 220 K adjacent octahedra are
tilted in the same direction along the z axis, while they are
oppositely rotated in the xy plane. A corresponding trend
appears in the molecular order parameter. This is the typical

pattern of the orthorhombic phase as illustrated in Fig. 2(d).
Between 220 and 270 K, thermal fluctuations allow the
molecules to reorient, and the three elements of the
molecular order parameter gradually merge to 0.5, which
corresponds to the 90° angle between neighboring mole-
cules in the tetragonal phase. The octahedral order param-
eter changes rather abruptly to the tetragonal pattern after
the transition in the molecular order parameter has finished
[drop of Oy in Fig. 3(b) at 270 K]. These results clearly
indicate that the transition of the PbI6 octahedra occurs after
the reorganization of the molecules has completed; in other
words, themolecules seem to inhibit the transition. The exact
same trend is observed in a constant temperature MD at
220 K shown in Sec. D in the Supplemental Material [24].
All in all, our simulations suggest that the orthorhombic to

tetragonal transition is first order. The transition region in
Figs. 3(a) and 3(b) is a result of the still fairly fast heating
compared to experiment and slow dynamics of the MA
molecules. The second transition from the tetragonal to the
cubic phase, however, is continuous, since the lattice
parameters and order parameters evolve smoothly. This also
agrees with the reversibility; i.e., upon cooling the cubic to
tetragonal transition is readily observed (see Fig. D1 in the
Supplemental Material [24]) and the hysteresis between
heating and cooling is small.
The phase diagram of MAPbI3 is well known experimen-

tally. In order to test the methodology for a less well-studied
material, we move to CsPbI3, where the experimentally
observed phases strongly depend on the process of heating
and annealing as well as sample preparation, and thus, their
interpretations are still controversial [49,50]. Figure 3(c)
shows the simulated lattice constants as a function of the
temperature. The force-field generation andMD simulations

FIG. 2. Phase transitions of MAPbI3. (a) Simulated lattice constants compared to experiment. (b) A power law, ðTc − TÞ2β, fitted to the
simulated and experimental tetragonal distortion, ðc − aÞ=c, where Tc and β are the transition temperature and the critical exponent,
respectively. (c) Three-dimensional polar plots of the probability distributions of the MA molecules (C─N bond orientation) at various
temperatures, ranging from 200 to 400 K. (d) Schematic representation of the three MAPbI3 phases as obtained by the MLFF.
Experimental data shown in (a) and (b) are taken from Ref. [14], and vertical orange and yellow bars indicate the orthorhombic to
tetragonal and the tetragonal to cubic phase transition temperatures, respectively.
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are described in the Supplemental Material [24]. Our MD
simulations show two now clearly continuous phase tran-
sitions between orthorhombic and tetragonal at 403� 13 K,
and between tetragonal and cubic at 550� 5 K. These
transitions are also fully reversible and are observed both
under heating (shown as colored lines) and cooling (shown as
gray lines). The simulated lattice constants agree well with
the experimental results reported by Marronier et al. [49]
The difference betweenMAPbI3 and CsPbI3 is related to the
slow, extra rotational degrees of freedom of the MA
molecule, which become accessible only in the tetragonal
and cubic phases, whereas for Cs only lateral “rattling”
movements become progressively more pronounced upon
heating.
Althoughboth perovskites exhibit similar crystallographic

structures, the transition temperatures of MAPbI3 are sig-
nificantly lower than those of CsPbI3. In order to better
understand the origin of this difference, we further extend
our on-the-fly scheme to other inorganic perovskites
ABX3 (A ¼ Cs or Fr, B ¼ Pb, and X ¼ I, Br, or Cl).
Comparison of the transition temperatures with the
Goldschmidt tolerance factor [42], t ¼ ðrA þ rXÞ=
½ ffiffiffi

2
p ðrPb þ rXÞ�, indicates that the different transition temper-
atures relate reasonably well with the size of the ions. Here,
rA, rPb, and rX denote the ionic radii of cation A, Pb, and
halogen X, respectively. The determination of these radii is
described in Sec. G in the Supplemental Material [24].
Figure 3(d) illustrates that the transition temperatures of the
hybrid perovskites decrease with increasing tolerance factor.
This trend can be explained by the mechanism described
below. The calculated tolerance factors of the inorganic
perovskites indicate that the PbX6 octahedra need to tilt in
order to allow the formation of multiple bonds between the
cation A and the halogen X. Without tilting, the Pb-halogen
distance (rPb þ rX) is too large compared to the optimal

cation-halide distance (rA þ rX). The prediction is consistent
with the fact that all six perovskites exhibit the orthorhombic
phase at low temperature. The situation, however, changes
with rising temperature. The effective radius of the cation A
increases by thermal fluctuations [as schematically shown in
Fig. 3(e)] and the tilting of the octahedra becomes unnec-
essary. Thus, the phase transition occurs. The necessary
amount of the thermal fluctuation depends on the radii. The
larger the cation A or the smaller the halide X radius, the
smaller is the necessary fluctuation. Therefore, the transition
temperatures decrease with increasing tolerance factor.
In summary, we have shown here that the combination of

FP calculations with on-the-fly ML has the potential to lead
to a paradigm shift in the modeling of complex materials at
finite temperature. On-the-fly ML enables an exceedingly
efficient sampling of structures over a large phase space
with very little human intervention. Our scheme is straight-
forwardly applicable to complex multielemental materials
and can be easily applied to other materials science
problems such as ionic diffusion or catalytic reactions.
For hybrid perovskites, we obtain excellent qualitative
agreement with experiment as well as useful new insights.
We observe the temperature driven transition from the
orthorhombic, over the tetragonal to the cubic phase to be
omnipresent in Pb perovskites. However, MAPbI3 is in fact
unique with a first-order orthorhombic to tetragonal phase
transition, related to the unfreezing of the molecular rota-
tional degrees of freedom.
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were partly performed on the Vienna Scientific Cluster
VSC3. All authors gratefully thank Ryoji Asahi for many
suggestions on applications of the machine-learning method
to materials science and Carla Verdi for proof reading of the
manuscript.

FIG. 3. Dynamics of the MAPbI3 and CsPbI3 lattice upon heating or cooling MDs at a rate of 0.5 K=ps. Lattice constants (a) and order
parameters (b) provided by the heating simulation for a 4 × 4 × 4 unit cell of MAPbI3. The black dashed line in (a) indicates a switch
from the orthorhombic to tetragonal representation. The bond vectors used in the order parameters are sketched in the inset.
(c) Simulated lattice constants for a 6 × 6 × 6 unit cell of CsPbI3 compared with experiments of CsPbI3. Results for heating are shown
using colored lines, whereas results for cooling are shown using gray lines. Experimental data shown in (c) are taken from Ref. [49].
(d) Phase transition temperatures of perovskites in dependence on the Goldschmidt tolerance factor. The circles and triangles represent
the data for various ABX3 perovskites. Lattice and order parameters for these perovskites are presented in the Supplemental Material
[24]. (e) Sketch of the thermal radius (rA) of the cation.
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