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We show experimentally that a pair of disks settling at negligible Reynolds number (∼10−4) displays two
classes of bound periodic orbits, each with transitions to scattering states. We account for these dynamics,
at leading far-field order, through an effective Hamiltonian in which gravitational driving endows
orientation with the properties of momentum. This treatment is successfully compared against the
measured properties of orbits and critical parameters of transitions between types of orbits. We demonstrate
a precise correspondence with the Kepler problem of planetary motion for a wide range of initial
conditions, find and account for a family of orbits with no Keplerian analog, and highlight the role of
orientation as momentum in the many-disk problem.
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Collective gravitational settling in a viscous fluid is a
notoriously challenging problem in the physics of driven
systemswith long-range interactions. In theStokesian limit of
Reynolds number Re → 0, sedimenting particles, which are
monopoles of force density, manifest the hydrodynamic
interaction [1–4] in its strongest form [5,6]. Among the
consequences of this strong coupling are chaos in three-
particle settling [7,8] and the resulting statistical character of
many-particle sedimentation [6,9–11]. Interestingly, how-
ever, the collective settling of identical spheres can be built
up from two-particle processes [12–14]. A pair falls faster
than an isolated sphere, with a horizontal drift when their
separation is oblique to gravity, but a constant separation
vector thanks to the reversibility of Stokes flow [2]. By the
same token a single apolar axisymmetric particle falls without
rotating, drifting horizontally at a rate proportional to its
constant tilt.However, for two sedimentingdisks a rich phase-
space dynamics emerges, via mutual rotation due to a
coupling between orientational and translational degrees of
freedom [15–18].
In this Letter, we present experiments that classify the

possible dynamical behaviors of a settling pair of disks. We
show that a symmetry-based far-field theory, without a
detailed calculation of the mutual rotation coupling,
accounts for the dynamics through the emergence of an
effective Hamiltonian for this wholly dissipative system.
Horizontal position and tilt in the presence of gravity thus
precisely mimic coordinate and momentum, with an inher-
ited time-reversal invariance. This emergent canonical
dynamics persists in the many-disk problem, where it
competes with the well-known velocity-fluctuations
problem [6,11,19–21] in the sedimentation of isotropic
particles.

Our experiments are conducted on pairs of identical
disks, falling in viscous fluid (Re ∼ 10−4) in a quasi-
two-dimensional container with dimensions of 30 × 50 ×
5 cm (width × height × depth). The fluid was transparent
polydimethylsiloxane (silicone oil) of viscosity 60 000 cSt
and density 0.96 g cm−3. The disks, of radius a ¼ 0.6 cm,
and 1 mm thickness, are made of aluminum (density
2.7 g cm−3), sanded smooth, and spray-painted black.
Their settling dynamics are captured every 5 seconds with
a NikonD700 DLSR camera. The images were converted to
8-bit and thresholded after subtracting the background.
Tracking was done by fitting an ellipse to the disks, with the
centroid of the ellipse giving the positions (xi, yi) with an
error of �0.02a and orientation of the major axis giving θi
of the disks with an error of �0.06°.
As shown in Fig. 1, the trajectories of the centers of the

disks lie in a plane. Assuming translation symmetry in the
x-y plane, and taking advantage of the observation that there
are no rotations due to torques about the x and y axes, the six
coupled degrees of freedomcanbe reduced to two separation
and two orientation degrees of freedom. Our observations
suggest two qualitatively distinct trajectory types: scatter-
ing, in which the separation increases monotonically, and
bound, in which separation and orientations oscillate with a
characteristic amplitude and wavelength. The oscillatory
behavior further falls into two classes, to be discussed later.
We ask the following: (i) Is there a well-defined

boundary in the space of initial conditions that separates
periodic and scattering (i.e., infinite wavelength) behavior,
or do our “scattering” states simply have a wavelength
longer than the container height? (ii) What determines the
emergent time period and wavelength of the periodic
orbits?
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Within the four-dimensional space of initial separations
and orientations, it is convenient to work with x≡ x2 − x1,
y≡ y2 − y1, θ− ≡ θ2 − θ1, and θþ ≡ θ1 þ θ2. Here, θi is
measured with respect to y axis, defined to be −ve in first
and fourth quadrants andþve in second and third quadrants
(Fig. 1). We begin with the symmetric case with initial
θ1 ¼ −θ2 and y ¼ 0. The resulting trajectories [Fig. 2(a)]
are symmetric, i.e., θþ ¼ 0 at all times. For small initial
value x0 of the horizontal separation x, the θi undergo full
rotations and x oscillates periodically, as observed in
experiments and simulations by Jung et al. [16]. As x0
is increased the wavelength and amplitude of the oscil-
lations increase sharply [Fig. 2(d)], until the terminal
motion seems to approach the linear trajectories of isolated
Stokesian disks (see the Supplemental Material [22], Video
1). Finite container height makes it impossible to establish

experimentally the existence of a threshold value of x0 at
which the wavelength and amplitude actually diverge. A
similar limitation applies to the numerical evidence for
scattering orbits [23] using an expansion in a=R and the
method of reflections [2,3].
Working at leading order in a=R, we construct an

effective Hamiltonian approach to the disk-settling problem
and map the symmetric case to the gravitational Kepler
problem, thus establishing the transition between periodic
and scattering orbits. We then go on to explain the
behaviors seen in asymmetric settling. We begin with an
isolated settling disk: the horizontal velocity of an isolated
settling disk is _x1 ¼ Fα sin 2θ1, where F is its buoyant
weight and the mobility α is defined below. The tilt angle θ1
remains constant. We can thus view the trivial evolution of
x1 and θ1 as the Hamiltonian dynamics of a free particle
with momentum θ1 and kinetic energy proportional to
cos 2θ1. This approach also applies to the two-disk case,
where θ1, θ2 do not remain constant.
For symmetric settling, retaining the lowest nonvanish-

ing contribution in an expansion (see the Supplemental
Material [22], text) in a=x, _x¼2Fαsinθ− and _θ−¼2Fγ=x2.
The proportionality constants α and γ are determined by the
solution for an isolated settling spheroid [24,26]. The
mobility α ¼ −ðXA

−1 − YA
−1Þ=12πμa and γ ¼ 1=8πμ,

where the resistance functions XA ¼ 8=3π and YA ¼
16=9π [3] in the limiting case of e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2=a2

p
→ 1

for radius a and thickness b of the disk. The above far-field
equations can be recast as Hamiltonian dynamics _x ¼
∂θ−H; _θ− ¼ −∂xH with

H≡ 4Fα sin2
θ−

2
þ 2Fγ=x; ð1Þ

where 4Fαsin2ðθ−=2Þ and 2Fγ=x play the roles of kinetic
and potential energy, respectively, but the 1=x comes from
the viscous hydrodynamic kernel, not gravity. This is
precisely the reduced Hamiltonian for the Kepler problem
[25] when expressed in terms of azimuthal angle θ− and
radial coordinate x [Fig. 2(b)]. The solution

1

x
−

1

x0
¼ α

γ
ðcos θ− − cos θ−0 Þ; ð2Þ

to the equations of motion, obtained earlier by Kim [23] for
far-field scattering trajectories, is simply conservation ofH,
describing both bound and scattering orbits [see Fig. 2(c)],
with a transition as x0 → xc ¼ 4a=π. Note that the
observed amplitude diverges at xc ¼ 1.02a which is
smaller than 4a=π [see Fig. 2(d)]. A circular Kepler orbit
arises only for α ¼ 0, which is the case of a pair of identical
spheres. Given the very close approach of the disks in a
bound state, the far-field mapping to the Kepler problem
bears up surprisingly well against experimental observa-
tions, as detailed in Fig. 2.

FIG. 1. Bound and scattering behavior: (a) Quasi-two-dimen-
sional setup, prepared with disk normal and separation vector
R⃗ ¼ R⃗2 − R⃗1 in plane of settling geometry, ðx; yÞ. Disk orienta-
tion angles θ1 and θ2 measured wrt gravity pointing along the ŷ
direction. (b) Time lapse showing observed pair dynamics
generated by varying initial interdisk separation (x0, y0) and
orientations θ1, θ2. Trajectories fall into two broad classes:
periodic bound (1–3) and scattering (4–6).
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A simple case of asymmetric initial conditions consists
of releasing the disks at the same height with their
normal vectors perpendicular to each other, θþ ¼ π=2
[Figs. 3(a)–3(c)]. Once again, periodic dynamics in the
orientation is observed, with the added complexity of y
oscillating between positive and negative values, and an
apparent transition to unbounded orbits with increasing x0.
The effective Hamiltonian description above provides a

useful framework for understanding the dynamics resulting
from amore general set of initial conditions ðx0; y0; θþ; θ−0 Þ.
A reduction to an effective two-dimensional dynamics can
be achieved for asymmetric initial conditions θþ0 ≠ 0 as
well, and periodic behavior is preserved but more complex
[Figs. 3 and 4]. The resulting non-Keplerian behavior can be
understood by extending Eq. (1) to incorporate the depend-
ence of the angular velocity of the disks on the angle between
the separation vectorR and the external force F. To leading
order in a=R, the angular velocities of disks are equal and
opposite, _θ1 ¼ − _θ2 ¼ γF ×R=R3. With this additional
ingredient, we get the general equations of motion

_x ¼ 2Fα sin θ− cos θþ; _y ¼ −2Fα sin θ− sin θþ ð3Þ

_θ− ¼ 2Fγ
x
R3

; _θþ ¼ 0: ð4Þ

Here α and γ are same as before Eq. (1). The form (3) and (4)
also follows on general grounds of symmetry (see the
Supplemental Material [22], text). The conservation of θþ
in Eq. (4) constrains the dynamics of x and y to a line with

slope− tan θþ, reducing the number of variables to two, thus
allowing phase plane analysis. The dynamics in terms of
S≡ jR −R0j and θ− (see the Supplemental Material [22],
text) is given by _S ¼ ∂θ−H; _θ− ¼ −∂SH, with effective
Hamiltonian

H≡ 4Fα sin2
θ−

2
þ 2F

γ̄ðSÞ
RðSÞ ; ð5Þ

where γ̄ðSÞ≡ γðy0 − S sin θþÞ=ðy0 cos θþ þ x0 sin θþÞ and
RðSÞ ¼ ðS2 þ R0

2 þ 2Sx0 cos θþ þ 2Sy0 sin θþÞ1=2. Note
that, in the limit θþ → 0, Kepler orbits are realized for
more general initial separations with y0 ≠ 0.
The Hamiltonian (5) for θþ ¼ π=2 implies a dynamics

with y oscillating between positive and negative values
given by y ¼ �x0 cos θ−=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8a=πx0Þ2 − cos2 θ−

p
, constant

x, and, with increasing x0, a transition from periodic to
unbound orbits at xc ¼ 8a=π (see the Supplemental
Material [22], text). These are in accord with observations
(see Fig. 3 and the Supplemental Material [22], Video 2),
though the experiments additionally show small oscilla-
tions in x possibly arising from near-field effects and small
imprecision in initial release angles.
For both symmetric and perpendicular initial conditions,

the time period diverges at the boundary between bound and
scattering orbits. Assuming disk thickness ≪ radius, we
have two length scales in the problem: the radius a of the
disk and the separationR between the particles. One expects
the period T ¼ ða2μ=FÞfðR=a;Re; Fr; θþ0 ; θ−0 Þ, where the

FIG. 2. Symmetric settling: (a) Experimental time-lapse images showing transition from periodic to scattering trajectories with
increasing x0. Wavelength λ and amplitude A appear to diverge as x0 approaches a critical value. (b) Elliptical Kepler orbits for the bound
states are clearly seen when the measured x and θ− are displayed as radial and azimuthal coordinates, respectively. (c) Trajectories in x-θi
plane, i ¼ 1, 2, showing regions of bound and scattering trajectories. The gray curves are predicted by the far-field analysis
1=x ¼ 1=x0 þ ðπ=8aÞðcos 2θi − cos 2θi0Þ, where θi0; x0 are the initial values. Red, blue, and green represent restricted, bound, and
scattering regions, respectively. (d) Amplitude vs minimum separation fits 1=ðx−10 − x−1c Þ þ c with xc ¼ 1.02a and c ¼ 0.725a (red
curve), qualitatively consistent with the asymptotic far-field prediction (blue) 1=ðx−10 − π=4aÞ. (e) Scaling of period T with amplitude A,
T ∼ Aν, with ν ≃ 1.59� 0.11 consistent with the 3=2 of Kepler’s third Law.
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scaling function f depends on the initial conditions, as well
as on the Reynolds number Re¼ ρUa=μ ≃ 10−4 and Froude
number Fr¼ U=

ffiffiffiffiffi
ga

p ≃ 10−3 both of which are negligibly
small. fðR0=aÞ can be calculated for symmetric and
perpendicular cases (see the Supplemental Material [22],
text) in the far-field limit, whence we find that the wave-
length λ ∼ TF=aμ diverges more strongly (∼A3) for the
perpendicular case than for the symmetric case (∼A3=2

Kepler’s third Law), a trend consistent with our observations
[see Fig. 3(d)].
Rocking—a qualitatively distinct periodic behavior

analogous to libration in a pendulum, in which θ− oscillates
in a limited range—emerges for π=2 < θþ < π (see the
Supplemental Material [22], Video 3). Releasing the disks
with θ1 ¼ π=2 and decreasing −θ2 from π=2 (symmetric
case) toward zero we experimentally capture the tumbling-
rocking transition at θ−0 ¼ −π=2 [see Figs. 4(a) and 4(b)].
Unlike in tumbling, in rocking orbits the sign of x and
hence, from Eq. (4), of _θ−, alternates as the particles
interchange their relative horizontal positions. Except for
the special cases of parallel and perpendicular release,
rocking dynamics is best viewed in x, y, and θ− space albeit
with proportional x and y displacements. Figure 4(c) shows
the trajectories projected on the x-θ− plane. The tumbling-
rocking transition can once again be understood in terms of

the effective Hamiltonian (5) (see the Supplemental
Material [22], text). The extension to the case of dissimilar
disks is also discussed in the Supplemental Material [22].
The two-particle processes discussed above can be used

as a building block to study the coupling of positions
and orientations in multiple disks settling in our geometry
[see Fig. 1], within the far-field description [10,13,20].
Let ðxm; ymÞ be the position of the mth particle. At
each location rm, define U⃗ðrmÞ≡P

N
n≠m FGxyðrm − rnÞx̂þ

FGyyðrm − rnÞŷþ Fαŷ, where Gij is the Oseen tensor [2,3]
and m, n are particle labels. Pairwise addition of forces and
torques at position rm due to particles at other locations rn
gives the coupled dynamics of the mth disk

_xm ¼ Fα sin 2θm þ Ux; _ym ¼ Fα cos 2θm þ Uy ð6Þ

and

_θm ¼ −
Fγ
2

∂
∂xm

XN
n≠m

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxm − xnÞ2 þ ðym − ynÞ2

p : ð7Þ

From Eqs. (6) and (7), we can show (R. Chajwa et al.,
unpublished) that the dynamics in the ðx; θÞ space can be
viewed as an effective Hamiltonian dynamics riding on the
y-averaged background flow, _xm ¼ ∂θmH

X þ ŪxðxmÞ,
_θm ¼ −∂xmH

X where the effective Hamiltonian takes the
form

HX ≡XN
m¼1

Fα sin2 θm −
XN
n≠m

Fγ
Z

Lðxm − xnÞdxm; ð8Þ

where the expressions forL and Ūx can be obtained from the
steady-state average of Eqs. (6) and (7) over the y coor-
dinates. Ūx contains the giant velocity fluctuations of [21]
and possible screening mechanisms à la Refs. [6,11,19,20]
and the “potential energy” term containing γ in Eq. (8)
incorporates the tilt-induced lateral drift [10].
Our experiments have uncovered a rich dynamics in the

zero-Reynolds-number settling of a pair of identical disks,
with a well-defined boundary between bound and scatter-
ing orbits and two distinct classes of periodic bound-state
motion. Despite limited accuracy in locating the bound-
scattering boundary, and excluding extreme situations
where a disk is in the hydrodynamic shadow of another
(see the Supplemental Material [22], Video 4), the far-field
hydrodynamic interaction offers a satisfactory and detailed
understanding of the dynamics, even close to particle
contact. It should be clear that our analysis is applicable
to any uniaxial shape with fore-aft symmetry along the
symmetry axis. Unexpectedly, the conservative dynamics
generated by an effective Hamiltonian governs this
viscosity-dominated system, with the tilt of the disks
playing the role of momentum. For a large family of initial

FIG. 3. Perpendicular initial condition. (a) Experimental
time-lapse images, when the disks are released with
perpendicular initial orientation. x0 is increased from left to
right leading to a divergence in vertical separation y. (b) Exper-
imental trajectories in the θ−-y plane represented by points,
compared with the far-field result plotted in gray solid lines:
y ¼ �x0 cos θ−=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8a=πx0Þ2 − cos2 θ−

p
. Blue and green in the

phase diagram represent bound and scattering regions, respec-
tively, as predicted by far-field analysis. (c) Divergence of
amplitude of y oscillations captured by plotting maximum value
of y=a as function of x0=a. Solid curve is far-field prediction of
amplitude: Aðx0Þ ¼ x0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8a=πx0Þ2 − 1

p
, with the red dotted line

representing the critical x0 ¼ 8a=π. (d) Observed wavelength λ=a
increases more strongly as function of amplitude A=a for
perpendicular (blue) as compared to symmetric case (red).
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conditions, the problem maps precisely to that of Kepler
orbits. We find and account for a distinct family of orbits
with no planetary-orbit analogue, where the angle executes
oscillations over a limited range. For the many-disk
problem, a y-averaged treatment yields Hamiltonian
dynamics for ðx; θÞ as conjugate variables, riding on a
background carrying the velocity fluctuations of sedi-
menting spheres [6,11,19,20].
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FIG. 4. Tumbling to rocking transition. (a) As θ−0 decreases,
tumbling gives way to rocking. Trajectory of disk on right (red)
exchanges relative x position with that on left (blue) except for the
first trajectory where −θ−0 > π=2. (b) Maximum angle of disk on
right is plotted as function of −θ−0 , and rocking-tumbling
transition observed at θ−0 ¼ −π=2 (dotted red line), consistent
with far-field calculation. (c) Trajectories plotted in x-θ− plane;
red symbols represent rocking motion and blue represents
tumbling. The corresponding red and blue solid curves represent
the far-field prediction of rocking and tumbling dynamics,
respectively (see the Supplemental Material [22], text).
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