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The physical particles in supersymmetric Yang-Mills (SYM) theory are bound states of gluons and
gluinos. We have determined the masses of the lightest bound states in SU(3) N ¼ 1 SYM theory. Our
simulations cover a range of different lattice spacings, which for the first time allows an extrapolation to
the continuum limit. Our results show the formation of a supermultiplet of bound states, which provides a
clear evidence for unbroken supersymmetry.
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Supersymmetry (SUSY) plays a fundamental role in the
physics of elementary particles beyond the standard model.
The understanding of the nonperturbative phenomena of
SUSY theories is important since they might explain the
supersymmetry breaking at low energies. Besides the
relevance for extensions of the standard model, super-
symmetric gauge theories also provide insights into non-
perturbative phenomena that also occur in QCD, such as
confinement of color charges, at least in certain regimes
since supersymmetry constrains the nonperturbative con-
tributions. Nonperturbative numerical methods such as
lattice simulations are essential to complement and extend
the obtained analytical understanding from SUSY models
to theories with less or no supersymmetry.
Supersymmetric extensions of the standard model must

include the superpartners of the gluons, the so-called
gluinos, which are Majorana fermions transforming under
the adjoint (octet) representation of SU(3). The gluino
would interact strongly, and the minimal theory describing
the interactions between gluons and gluinos is N ¼ 1
supersymmetric SU(3) Yang-Mills theory, abbreviated
SU(3) SYM theory. The strong interactions between gluons
and gluinos are expected to give rise to bound states
organised in supermultiplets degenerate in their masses,
if supersymmetry is unbroken. The structure of the

supermultiplets has been theoretically investigated in
Refs. [1–3]. The boson-fermion degeneracy is expected to
appear at the nonperturbative level and, as a consequence,
the singlet mesons and glueballs of QCD-like theories have
an exotic fermion superpartner, the gluino-glue, which is a
bound state of a single valence gluino with gluons. These
predictions are based on formal considerations since a
detailed analysis with nonperturbative methods for the
theory at low energies has been missing. Unbroken super-
symmetry is usually expected due to a nonvanishing Witten
index of the theory. However, in presence of relevant
nonholomorphic contributions the general picture might
be questionable [4] and an investigation without any
previous assumption would be desirable.
SU(3) SYM theory is of a complexity comparable to

QCD, and Monte Carlo lattice simulations are an ideal
ab initio approach to investigate this theory. In particular,
a study of the mass gap of the particle spectrum requires
numerical simulations. As supersymmetry is explicitly
broken by any lattice discretization [5–8], it is a chal-
lenging task to show that the bound states masses are
consistent with the formation of supermultiplets in the
continuum limit. It would open up the possibility of much
further reaching numerical investigations of SYM theory
and correspond to the first step towards a numerical
investigation of supersymmetic QCD and gauge theories
with extended supersymmetry, since SYM theory is one
sector of these theories. Such a result would also provide
evidence for the correctness of the conjectured bound
state spectrum and for the absence of an unexpected
breaking of supersymmetry by the nonperturbative
dynamics.
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In this Letter, we focus on the spectrum of bound states
of the N ¼ 1 supersymmetric Yang-Mills theory with
gauge group SU(3). In previous projects we have inves-
tigated SYM theory with gauge group SU(2) [9–11], which
can be considered to be a test case for the more realistic
SU(3) SYM theory that contains the gluons of QCD.
The gauge group SU(3) brings new physical aspects; for
instance, it has complex representations in contrast to
SU(2), and other types of bound states are possible. The
breaking pattern of the global chiral symmetry group is also
quite different from the case of SU(2). In particular, in the
region of spontaneously broken symmetry, it is expected
that CP-violating phases exist, which are related to each
other by discrete Z3 transformations.
We have presented our first data at a single lattice

spacing in Ref. [12] together with some estimates of
systematic uncertainties. The present Letter is the first
final analysis for the lowest chiral supermultiplets of SU(3)
SYM theory with a complete chiral and continuum
extrapolation.
In the continuum the (on shell) Lagrangian of SU(3)

supersymmetric Yang-Mills theory, containing the gluon
fields Aμ and the gluino field λ, is

L ¼ tr
�
−
1

2
FμνFμν þ iλ̄γμDμλ −m0λ̄λ

�
; ð1Þ

where Fμν is the non-Abelian field strength andDμ denotes
the gauge covariant derivative in the adjoint representation
of SU(3). The gluino mass term with the bare mass
parameter m0 breaks supersymmetry softly. The gauge
coupling g is represented in terms of β ¼ ð6=g2Þ, and the
mass in terms of the hopping parameter κ ¼ ½1=2ðm0 þ 4Þ�.
The technical details of our approach for the numerical

simulations of SU(3) SYM theory have been described
in our previous publication [12]. We employ the lattice
discretization of SYM proposed by Curci and Veneziano
[13]. In our approach the bare mass parameter is tuned to
the chiral limit determined by the point where the adjoint
pion ma-π mass vanishes. The basic Wilson action for the
gluino is in our case improved by the clover term to reduce
the leading order lattice artifacts, see Ref. [12] for further
details. We have used the one-loop value for the coefficient
csw [14], leading to a one-loopOðaÞ improved lattice action
at finite lattice spacings a. As indicated by our first results
[12], the perturbative csw is already sufficient to provide a
drastic reduction of lattice artifacts even at quite coarse
lattice spacings.
Alternative approaches have been investigated for the

simulation of SYM theory [15–18], but so far they did not
succeed in the continuum extrapolation of the bound state
spectrum.
The complexity and the cost of the numerical lattice

simulations for this theory is at least as challenging as in
corresponding investigations of QCD. Additionally, there

are more specific challenges for the technical realization of
numerical simulations of SYM theory, such as the unavoid-
able explicit breaking of supersymmetry on the lattice.
Therefore, the most important task of our project is to
demonstrate that the infrared physics emerging from the
numerical simulations is consistent with restoration of
supersymmetry in the continuum limit.
A further specific challenge is related to the integration

of Majorana fermions, which leads to an additional sign
factor in the simulation [12]. This Pfaffian sign has to be
considered in a reweighting of the observables.
The scale, i. e., the determination of the lattice spacings

in physical units in terms of a common observable, is
measured from gluonic observables. We are using chirally
extrapolated values of the scale w0 from the gradient flow
[19–21]. The chiral values w0;χ are obtained at each β by a
fit of the data to a second order polynomial in the square of
the adjoint pion mass in lattice units ðama-πÞ2.
An improvement with respect to our work on SU(2)

SYM theory, where we extrapolated the observables first to
the chiral limit and in a second step to the continuum limit,
is that we now use a combined fit towards the chiral and
continuum limit. The chiral continuum values Oχ;cont of the
observable O in units of w0;χ are determined by

Oðm2
a-π; w0;χÞ ¼ Oχ;cont þ cð1Þxþ cð2Þyþ cð3Þxy; ð2Þ

where x ¼ ðw0;χma-πÞ2 and y ¼ ða=w0;χβ
2Þ (linear extrapo-

lation). Due to the one-loop clover improvement of the
action, we expect leading lattice artifacts to be of Oða=β2Þ
for on shell observables, which leads to the dependence on
the gauge coupling in y. The Oða=β2Þ contribution could,
however, be very small since considerable improvements
have been observed already with the tuning to the one-loop
level. In order to compare both cases, we perform addi-
tional fits with the leading lattice artifact term Oða2Þ, i.e.,
y ¼ ða2=w2

0;χÞ in Eq. (2) (quadratic extrapolation).
The main indication for restoration of supersymmetry in

lattice simulations presented in this Letter is the formation
of mass degenerate supermultiplets. An alternative indica-
tion is given by the supersymmetric Ward identities. The
violation of the supersymmetric Ward identities in the
chiral limit is an indication of lattice artifacts, since chiral
symmetry and supersymmetry should be restored at the
same point in the continuum theory, if there is no
unexpected supersymmetry breaking. The Ward identities
also provide a cross check for the tuning of the bare gluino
mass parameter. We have found that the Ward identities are
consistent with a restoration of supersymmetry, and the
leading lattice artifacts are Oða2Þ as found in Ref. [23].
This analysis will soon appear in a separate publication.
We have performed simulations at a large range of values

of the inverse gauge coupling β ranging from β ¼ 5.2 up to
β ¼ 5.8 to search for an optimal window for the continuum
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limit extrapolation. In our previous work [12] we have
presented the first results for the particle spectrum of SU(3)
SYM theory obtained at a single lattice spacing. We have
now investigated the systematic uncertainties regarding the
finite size effects, the sampling of topological sectors, and
the fluctuations of the Pfaffian sign, and found a parameter
range where these effects are under control. Only a subset
of the considered β range turned out to be reliable for the
determination of the bound states. The coarsest lattice
spacings (smallest β values) are too far away from the
continuum limit, which makes the extrapolation unreliable.
The finest lattice spacings (largest β values) suffer from
large finite volume effects and a freezing of the topological
fluctuations. According to these criteria, our final selection
of β values is 5.4, 5.45, 5.5, and 5.6.
In the current Letter, we present the final results for

the lightest particles of SU(3) SYM theory. We are now
able to combine several different lattice spacings in an

extrapolation to the continuum limit. In comparison to
Ref. [12], we have also improved our determination of the
bound states, leading to a clearer signal for the particle
masses. These methods have been introduced and tested
with the data of SU(2) SYM theory in Ref. [11].
The considered states and corresponding interpolating

operators are the scalar meson a-f0 (Õa-f0 ¼ λ̄λ), the
pseudoscalar meson a-η0 (Õa-η0 ¼ λ̄γ5λ), the scalar (0þþ)
glueball, and the fermionic gluino-glue state gg̃ (Õgg̃ ¼P

μνσμνTr½Fμνλ�), see Ref. [12]. The scalar glueball and the
a-f0 meson are combined in a common variational basis
for the scalar channel. The lightest states are expected to
form a chiral supermultiplet, which consists of a scalar, a
pseudoscalar, and a fermionic spin 1=2 particle. From our
previous investigations we expect a reasonable overlap of
both the a-f0 and the scalar glueball with the lightest scalar
state, whereas the lightest pseudoscalar state seems to have

FIG. 1. The chiral extrapolations of the particle masses at the different lattice spacings using the fit function (2) (y ¼ ða2=w2
0;χÞ). The

gluino-glue (gg̃), the pseudoscalar a-η0 meson, and the scalar channel (0þþ), which includes a mixing of the glueball and the a-f0 meson,
are extrapolated to the point where the adjoint pion mass vanishes.
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a dominant overlap with the a-η0 rather than with the 0−þ
glueball. Therefore we consider the meson-glueball mixing
only in the scalar channel, and neglect, at the moment, the
0−þ glueball. Note that the measurement of the particle
masses in SYM theory is quite challenging, involving only
flavor singlet and glueball states.
The chiral extrapolations to the point of vanishing

adjoint pion mass ma-π are shown in Fig. 1. Away from
the chiral point, the particles have different masses and
the chiral multiplet splits. This splitting is sizable at least
for the coarsest lattice spacings. At these coarsest lattices,
the gluino glue becomes the heaviest particle, whereas the
scalar particle becomes the lightest state. There is an
indication of a remaining mass splitting in the chiral limit
at the three coarsest lattice spacings.
At our two finest lattice spacings (β ¼ 5.5 and β ¼ 5.6),

there is no considerable splitting between the states of the
multiplet in the chiral limit. The scalar, pseudoscalar, and
fermion masses are degenerate within errors at β ¼ 5.6
[24]. The 0þþ state has the largest error of around 20%, and
it can not be expected to be more precise than the current
glueball measurements in QCD.
A particular problem with our first data at the finest

lattice spacing (β ¼ 5.6) has been the long autocorrelation
due to topological freezing. As we have already shown in
our previous publication [12], larger volumes allow for
more topological fluctuations, but the autocorrelation time
of quantities like w0 is still considerably large.
The three different lattice spacings allow for the first time

a complete extrapolation of the lightest states of SU(3)
SYM theory to the continuum. Compared to our previous
work with an unimproved Wilson fermion action for the
investigations of SU(2) SYM theory, the differences of
the masses in units of w0;χ between the different lattice
spacings are smaller and the continuum extrapolation is

rather flat thanks to the clover improved fermion action.
Due to the weak dependence on the lattice spacing, the
linear and quadratic extrapolations are consistent with each
other, see Fig. 2. The final results using the two different fit
procedures are summarized in the following table [25]:

Fit w0mgg̃ w0m0þþ w0ma-η0

Linear fit 0.917(91) 1.15(30) 1.05(10)
Quadratic fit 0.991(55) 0.97(18) 0.950(63)
SU(2) SYM theory
in Ref. [11]

0.93(6) 1.3(2) 0.98(6)

For comparison, we have also added the data from our
previous investigations of SU(2) SYM theory to the table.
We have finalized our first continuum extrapolation of

the lightest bound states in supersymmetric SU(3) Yang-
Mills theory. We have found a formation of a chiral
supermultiplet in the continuum limit. In combination with
the results from an analysis of the supersymmetric Ward
identities, this is a good indication for the absence of
supersymmetry breaking by the nonperturbative dynamics
of the theory. It also shows that the unavoidable breaking of
supersymmetry by the lattice discretization is under control
in this nontrivial theory.
This important observation opens the way towards

several further investigations of SU(3) SYM theory, in
particular concerning the phase transitions and chiral
dynamics of the theory. In addition, it is the first step
towards investigations of supersymmetric QCD and other
supersymmetric gauge theories that can not be accom-
plished without control of the supersymmetry breaking in
the pure gauge sector.
Our investigation is based on the approach proposed in

Ref. [13], which means that chiral symmetry is broken in a
Wilson discretization. Our data indicate that the symmetries
are restored by a tuning of the gluino mass parameter and

FIG. 2. The extrapolation of the bound states masses to the continuum using the fit function [Eq. (2)] in (a) linear (y ¼ ða=w0;χβ
2Þ) and

in (b) quadratic (y ¼ ða2=w2
0;χÞ) in the lattice spacing. The data points mark the chirally extrapolated values at simulated lattice spacings.

Since the chiral and continuum extrapolation is done simultaneously, they align completely with the fit curves.

PHYSICAL REVIEW LETTERS 122, 221601 (2019)

221601-4



the approach can be considerably improved by the clover
fermion action.
Our results can be compared to the our previous analysis

of SU(2) SYM theory, presented in Refs. [10,11]. We find
that in units of w0 the masses of the multiplets are
compatible with each other. This indicates only a weak
dependence of the multiplet mass on Nc.
One interesting additional aspect for further investiga-

tions is the continuum limit of the splitting of the multiplet
as a function of the soft supersymmetry breaking. Our
current data in Fig. 1 show that the slope of the bound state
masses as a function of the gluino mass has a significant
dependence on the lattice spacing. Therefore the continuum
extrapolations away from the chiral limit are more chal-
lenging and we plan further investigations in this direction.
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