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Aix Marseille Université, Université de Toulon, CNRS, CPT, 13000 Marseille, France

Daniel Sudarsky
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, México D.F. 04510, México
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We argue that discreteness at the Planck scale (naturally expected to arise from quantum gravity) might
manifest in the form of minute violations of energy-momentum conservation of the matter degrees of
freedom when described in terms of (idealized) smooth fields on a smooth spacetime. In the context of
applications to cosmology, such “energy diffusion” from the low energy matter degrees of freedom to the
discrete structures underlying spacetime would lead to the emergence of an effective dark energy term in
Einstein’s equations. We estimate this effect using a (relational) hypothesis about the materialization of
discreteness in quantum gravity which is motivated by the strict observational constraints supporting the
validity of Lorentz invariance at low energies. Arguments based on a simple dimensional analysis lead to an
estimate of an effective cosmological constant agreeing in order of magnitude with its observed value. If
correct, this would constitute remarkable empirical evidence for a Planckian granular aspect of spacetime.
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The discovery that the Universe is undergoing an
accelerated expansion [1,2] is the source of one of the
greatest puzzles in our present understanding of cosmology
which goes under the name of the dark energy problem.
While the assumption of the presence of a cosmological
constant Λ remains the most successful phenomenological
model, naive theoretical reasoning predicts a value for Λ
that is either 120 orders of magnitude too big, or is strictly
vanishing when a protective symmetry principle is at play
[3]. It would be desirable to have a concrete fundamental
calculation leading to Λobs ≈ 1.19 × 10−52 m−2, the value
indicated by observations [4].
A recent work [5] proposed a framework where violations

of energy momentum conservation produce a dark energy
contribution. The key result of that work was to characterize
the effective framework where violations of energy conserva-
tion are made compatible with general relativity. As an
illustration, we applied it to two models, previously consid-
ered in the literature, that propose such violations. However,
neither of these twocouldbe taken as truly realistic.On theone
hand, the cosmological time at which the effects would start
was not intrinsically defined by the models, and, on the other
hand, the strength of the violations of energy conservation
were encoded in a phenomenological adjustable parameter
with no explicit link to known fundamental constants.
Therefore, while these examples were illustrative of the idea
that small violations can accumulate and contribute non-
negligibly to Λ, they could not be used to predict its value.
In this Letter, we bridge this gap by proposing a

mechanism to generate Λ leading to quantitative estimates

based entirely on known fundamental features of the
physics involved. The origin of the cosmological term,
we suggest, is to be found in the microscopic structure of
spacetime and its interaction with matter. We will work
under the hypothesis that discreteness of geometry and
Lorentz invariance at low energies are fundamental aspects
of quantum gravity. Based on these two fundamental
features, we propose a phenomenological model for quan-
tum-gravity-induced violations of energy conservation
depending only on the fundamental constants G, c, ℏ,
and a few parameters of the standard model (SM). We show
that our simple proposal resolves the two limitations of the
previous examples and predicts a contribution to the
cosmological constant of the correct order of magnitude.
One of the most important constraints on the form of

quantum discreteness at Planck scales comes from the
observed validity of Lorentz invariance at quantum field
theory scales. As shown in [6,7], this rules out the simple
atomistic view of a spacetime foam selecting a preferred
“rest frame” at the Planck scale. This result, which severely
constrains phenomenological ideas, is corroborated by a
large collection of empirical evidence [8]. A more subtle
theoretical characterization of spacetime discreteness at
Planck’s scale is necessary.
We think that the key for understanding Planckian

discreteness lies in the relational nature of physics partly
uncovered by Einstein’s theory of gravity [9]. In general
relativity, geometry can only be probed by the matter
degrees of freedom (d.o.f.). The metric has a clear physical
meaning only when rulers and clocks are introduced.
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More precisely, the construction of observables (diffeo-
morphism invariant quantities) requires the use of relational
notions involving a mixture of geometric and matter d.o.f.
The difficulty of actually defining such quantities is, in fact,
one of the most severe technical problems in formal
approaches to quantum gravity [10]. In our view, such a
relational perspective is essential for understanding dis-
creteness at the Planck scale.
Thus, we are rejecting the notion of a spacetime foam

acting as an empty arena where matter, if placed there,
would reveal its preexisting features. Quantum discreteness
should arise primarily via the interactions of gravity with
those other d.o.f. which, by their nature, are able to select a
preferential rest frame where the fundamental scale lp
acquires an invariant meaning. In other words, within the
relational approach we are advocating, it is clear that, in
order to be directly sensitive to the discreteness scale lp,
the probing d.o.f. must themselves carry their intrinsic
scale. Thus, massless (scale-invariant) fields are ruled out
as leading probes of discreteness simply because they
cannot be associated with any local notion of rest frame,
and thus, of a fundamental length scale. This argument
identifies massive fields as the natural candidates for probes
of spacetime discreteness. Thus, such discreteness must be
thought of as becoming relevant, or as “awakened,” by the
interactions of gravity with such scale-invariance-breaking
fields. The immediate possibility arising from such con-
siderations (and framed in a phenomenological perspective)
is that low energy quantum field theoretical excitations of
massive fields could interact with the underlying quantum
gravity microstructure and exchange “energy” with it.
(Some ideas with similar conceptual underpinning have
been explored in the context of laboratory searches for
quantum gravity phenomenology [11–13]. For a discussion
of the implications for the information problem in black
hole evaporation, see [14,15].).
In order to study the phenomenological implications of

these ideas, one needs a “mean field” or macroscopic
description of the quantity parametrizing the phenomenon.
An obvious choice is the trace of the energy-momentum
tensor T—which for a fluid in thermal equilibrium is
simply given by T ¼ −ρþ 3P—which signals the break-
ing of conformal invariance and, hence, the presence of
massive d.o.f. Via Einstein’s equations, T is related to the
scalar curvature R ¼ −8πGT. Therefore, the presence of
massive fields (suitable probes of discreteness according to
our rationale) is geometrically captured by a nontrivial R.
The effect on the propagation of massive fields must be

realized in a deviation from the geodesic motion of free
particles due to a “frictionlike” force encoding the noisy
interaction with the underlying spacetime granularity. As
argued in the previous paragraphs, the force must be
proportional to R. In addition, the force should depend
on the mass m, the four-velocity uμ, the spin sμ of the
classical particle (the only spacetime related proper features

characterizing a particle), and a timelike unit vector ξμ

specifying the local frame defined by the matter that curves
spacetime. For instance, in cosmology, ξ ¼ ∂t is naturally
associated with the time arrow of the comoving cosmic
fluid. In addition, and according to our preceding argu-
ments, the force should be proportional to the particle’s
mass, endowing it with a characteristic length scale: the
Compton wavelength. Dimensional analysis gives an
essentially unique expression which is compatible with
the above requirements

uμ∇μuν ¼ α
m
m2

p
sgnðs · ξÞRsν; ð1Þ

where α > 0 is a dimensionless coupling (Higher curvature
corrections could be added, but these are highly suppressed
by the Planck scale and, thus, are negligible for the central
point of this Letter. A term proportional to ϵνμγσξμsγuσ is also
allowed but does not affect the results).
The factor sgnðs · ξÞ makes the force genuinely friction-

like. This is apparent when one considers the change of the
mechanical energy of the particle E≡ −muνξν (defined in
the frame defined by ξμ) along the particles world line,
namely,

_E≡ −muμ∇μðuνξνÞ

¼ −α
m2

m2
p
jðs · ξÞjR −muμuν∇ðμξνÞ: ð2Þ

The last term in (2) encodes the standard change of E
associated to the non-Killing character of ξμ. The first term
on the right encodes the friction that damps out any motion
with respect to ξμ. Energy is lost into the fundamental
granularity until uμ ¼ ξμ, and the particle is at rest with
respect to the cosmological fluid, and thus, _E ¼ 0.
The simplest dynamics for the spin that is consistent with

(1), the conservation of s · s, and s · p ¼ 0, is

uμ∇μsν ¼ α
m
m2

p
sgnðs · ξÞRðs · sÞuν: ð3Þ

This is only a minimalistic solution, other terms can be
added to (3). We will investigate these aspects elsewhere as
they might be important for phenomenology; however, they
do not affect the main point in this Letter.
In this respect, it is also important to point out that the

violations of the equivalence principle and Lorentz invari-
ance implied by (1) and (3) can be readily checked not to be
in conflict with well known observational bounds by many
orders of magnitude [16] for α ∼Oð1Þ. A simple indication
comes from comparison of the value of R at the electro-
weak (EW) transition in cosmology (a regime where
our effects will be important) to that associated with,
say, the gravitational effect of a piece of lead: this gives
ðRlead=REWÞ ∼ 10−24.
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There is a remarkable formal similarity to Eq. (1) with
others arising in well understood situations. We have the
Mathisson-Papapetrou-Dixon equations [17] describing the
dynamics of idealized extended objects in general relativity,
uν∇νPμ ¼ − 1

2
RμνρσuνSρσ, where uμ represents the four

velocity of the object, Pμ its four momentum, Sρσ its spin,
and Rμνρσ is the Riemann tensor. Moreover, we note that the
characterization of WKB trajectories of the Dirac theory on
a pseudo-Riemannian geometry [18], to lowest order in ℏ,
is given by uν∇νðmuμÞ ¼ − 1

2
R̃μνρσuνhSρσi þ Oðℏ2Þ. The

previous is equivalent to (1) if one considers an effective
R̃μνρσ ∝ m2=m2

psgnðs · ξÞRϵμνρσ taken to encode a pure
torsion-related structure as R̃½μνρ�σ ≠ 0 (from the first
Bianchi identities).
Coming back to the main argument, the diffusion of

energy for a single particle, induced by (1), implies the lack
of energy-momentum conservation for a fluid made of a
collection of such particles (we will compute this below).
However, violations of energy-momentum conservation are
incompatible with general covariance and, hence, with
the standard general relativity description of gravity.
Fortunately, there is a simple relaxation of general covari-
ance (originally studied by Einstein) from full coordinate
invariance down to spacetime volume preserving coordi-
nate transformations. Such a modification—which we only
take as an effective low energy description of a (in a
suitable sense) general covariant fundamental physics—is
called unimodular gravity (UG), and its field equations are
just the trace-free part of the standard Einstein’s equations

Rμν −
1

4
Rgμν ¼ 8πG

�
Tμν −

1

4
Tgμν

�
: ð4Þ

Defining Jμ ≡ ð8πGÞ∇νTνμ, assuming UG integrability
dJ ¼ 0, and using Bianchi identities, one obtains [5]

Rμν −
1

2
Rgμν þ

�
Λ0 þ

Z
l
J

�
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Λ

gμν ¼ 8πGTμν; ð5Þ

where Λ0 is a constant of integration, and l is a one-
dimensional path from some reference event. Thus, the
energy-violation current J is the source of a term in
Einstein’s equations satisfying the dark energy equation
of state. An additional, often alluded to feature of UG is that
the vacuum energy does not gravitate [3,19,20].
Now, we compute Jν ≡ 8πG∇μTμν as implied by (1). For

a particle species i one has the following contribution to the
energy momentum tensor (the interactions between differ-
ent species are neglected here as their effect leads to very
small corrections):

Ti
μνðxÞ≡

Z
pμpνfiðx; p; srÞDpDsr; ð6Þ

where fiðx; p; srÞ encodes the particle distribution in phase
space with sr denoting the value of the spin of the particle in
its rest frame, Dp ¼ δðp2 þm2Þdp4, and Dsr is the
standard measure on the sphere of the spin directions.
Simple kinetic theory allows us to express ∇μTi

μν as (see
equation 2.113 in [21])

∇μTi
μν

Ti ¼ −
R
miFνfiðx; p; srÞDpDsr
m2

i

R
fiðx; p; srÞDpDsr

¼ −α
mi

m2
p
R

R ½sνs0js0j �fiðx; p; srÞDpDsrR
fiðx; p; srÞDpDsr

ð7Þ

the components labelled by zero refer to those along ξ.
Assuming thermal equilibrium at temperature T, and
ignoring the negligible additional effects of the force on
the distribution, we have fiðx; p; srÞ ¼ fiTðpÞ where the
latter is the standard Boltzmann distribution.
There is a subtle point that ought to be noted here: this

part of the calculation is carried out by considering a
spacetime region small enough to be covered by Riemann
normal coordinates (i.e., a local inertial frame) in such a
way that the standard effects of curvature can be neglected.
However, the region is large in comparison with the Planck
scale so that the energy diffusion effects, the nonstandard
influence of R in our model, are encoded in the friction
force underlying (1).
Isotropy of the equilibrium configuration implies that

only the zeroth component of (7) is nontrivial. The relevant
integration over spin is

Z
js0jDsr ¼

2πpjsj
m

Z
j cosðθÞj sinðθÞdθ ¼ 2πpjsj

m
;

where p2 ≡ p⃗ · p⃗, and the factor p=m comes from the boost
relating the comoving frame to the rest frame of the
particle. The next step is

R ½2πpjsjm �fTðpÞDpR
fTðpÞDp

¼ 4πjsj T
m

�
1þ O

�
log

�
m
T

�
m2

T2

��
:

Therefore, in the relativistic regime T ≫ m, one has

Jν ≡ ð8πGÞ∇μTμν ¼ 4πα
T
m2

p
R

�
8πG

X
i

jsijTi

�
ξν;

≈ 2παℏ
T
m2

p
R2dtν; ð8Þ

where, in the first line the sum is over particle species, and
in the last line, we specialize on an approximation valid for
the case where a single jsj ¼ ℏ=2 fermion species domi-
nates. This approximation will used in order to simplify the
formulas that follow; however, it is not necessary [the full
expression is used in computing the results of Fig. (1)].
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Now, we focus on the effects of (8) in the dynamics of
the early Universe when its macroscopic geometry is well
approximated by the flat Friedmann-Lemaître-Robertson-
Walker metric

ds2 ¼ −dt2 þ aðtÞ2dx⃗2; ð9Þ
and where the local frame ξ ¼ ∂t is identified with
comoving observers. As only massive particles with spin
are subjected to the frictional force (1), the diffusion
mechanism in cosmology starts when such particles first
appeared. According to the SM—whose validity is
assumed from the end of inflation—this corresponds to
the EW transition time. We further assume that a protective
symmetry enforces Λ0 ¼ 0 (see, for instance, [22,23]).
Now, we are ready to estimate the effective cosmological

constant predicted by our model. Using (5) and (8), one
gets

Λ ¼ 2παℏ
m2

p

Z
t0

tEW

½8πGðρ − 3PÞ�2Tdt; ð10Þ

with t0 the present time. It is convenient to change the
integration variable in (10) from comoving time t to
temperature T given the essentially direct relation between
the two quantities. During the relevant period, of radiation
domination, the matter fields are assumed to be in thermal
equilibrium. The density of the Universe is then given by
ρ ¼ π2g�T4=ð30ℏ3Þ, where g� ≈ 100 is the effective degen-
eracy factor for the temperatures of interest [24]. Taking
into account that temperature scales like a−1, using the
Friedman equation, and HðaÞ ¼ _a=a, one gets

dT
T

¼ −
da
a

¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πG
3

π2g�T4

30ℏ3

s
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

HðaÞ

dt: ð11Þ

Now, we will focus just on the leading contributions. In the
ultrarelativistic regime, standard thermodynamics leads to
the expression

ρ − 3P ≈
m2

t T2

2ℏ3
; ð12Þ

where mt is the top mass. Replacing the leading term in
(12) and (11) into (10), one gets

Λ ≈ 16α

ffiffiffiffiffiffiffi
5π3

g�

s
m4

t TEW
3

m5
pℏ2

ϵðTEWÞ; ð13Þ

where

ϵðTEWÞ ¼ −
3

T3
EW

Z
Tend

TEW

�
1 −

T2

T2
EW

�
2

T2dT ð14Þ

is a dimensionless correction factor that takes into account
the temperature dependence of the quark mass during the
EW transition, namely, m2

t ðTÞ ¼ m2
t ð1 − T2=T2

EWÞ. The
temperature where the contribution from the top quark
ends, Tend is the one satisfying 2mtðTendÞ ¼ Tend as it
defines the moment when its abundance decreases dra-
matically (Massive gauge bosons do not change the
order of magnitude estimate, as mZ=mt≈1=2 and
gZW�=gtt̄¼3=4. In (13), this leads to a factor
ð3=4Þ2ð1=2Þ4 × 2 as the spin of the bosons is twice that
of the fermions; i.e., their contributions is about 7% of that
coming from the top quark. From (8), one can work out the
precise corrections which are included in Fig. 1). Simple
dark matter models such as WIMPS will not affect the order
of magnitude of the estimate as long as they acquire their
masses via the Higgs mechanism and their number of
species is not too large. We note that, aside from the
correction factor, ϵðTÞ ≈ 10−3–10−4 in the range of interest,
Eq. (13) could have been guessed from dimensional
analysis. After substitution of the different quantities
involved and taking, for example, TEW ≈ 100 GeV
[25,26], and adding the gauge boson contributions [not
included in (13)] we find

Λ ≈ 4αΛobs; ð15Þ

where Λobs is the observed value of the cosmological
constant. For other values of TEW, see Fig. 1, where we plot
the value of the dimensionless coupling α needed to fit the
observed values as a function of TEW. These results are an
order of magnitude estimate; a refined calculation would
require detailed considerations of the dynamics of the
electroweak transition. However, such details are not
expected to modify our result in essential ways.
We believe that our proposal has important implications

of various types. At the theoretical level, it provides a novel
view that could reconcile Planckian discreteness and
Lorentz invariance and gives possibly valuable insights

85 90 95 100
Tew (GeV)

0.4

0.8

1.2

1.6

α

FIG. 1. The value of the phenomenological parameter α, see
Eq. (1), that fits the observed value of Λobs as a function of the
EW transition scale TEW in GeV. The contributions from the
massive gauge bosons of the SM have been included.
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guiding the search for a theory of quantum gravity. At the
empirical level, our analysis opens a path for searches of
novel physical manifestations of the gravity-quantum
interface.
Concerning the latter, we note that one might use (8) to

estimate the amount of energy loss in local experiments.
Presently (neglecting the cosmic expansion), we find _ρ ≈
−αðρ=ρwaterÞ210−70 g=ðcm3 sÞ where ρwater is the density of
sea water. The amount of energy produced is maximal at
the EW transition when the density of the Universe
ρðTEWÞ≈1025g=cm3, and corresponds to a relative change
of energy density in a Hubble time ofΔρ=ρ ≈ α10−51. Such
a minuscule level of energy loss cannot have significant
effects on the matter dynamics and, thus, would be very
hard to detect. Nevertheless, we have seen that such small
energy losses can explain the observed late time accel-
eration of the expansion rate of our Universe.
Finally, as the model links ρ and its evolution with the

present value of the cosmological constant, and ρ directly
enters in the computation of the structure formation leading
to galaxies, stars, and eventually humans, this framework
opens, in principle, a path that might help in addressing the
long debated “coincidence problem” [24].
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