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Motivated by recent experimental observations of coherent many-body revivals in a constrained Rydberg
atom chain, we construct a weak quasilocal deformation of the Rydberg-blockaded Hamiltonian, which
makes the revivals virtually perfect. Our analysis suggests the existence of an underlying nonintegrable
Hamiltonian which supports an emergent SU(2)-spin dynamics within a small subspace of the many-body
Hilbert space. We show that such perfect dynamics necessitates the existence of atypical, nonergodic
energy eigenstates—quantum many-body scars. Furthermore, using these insights, we construct a toy
model that hosts exact quantum many-body scars, providing an intuitive explanation of their origin. Our
results offer specific routes to enhancing coherent many-body revivals and provide a step toward
establishing the stability of quantum many-body scars in the thermodynamic limit.
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Remarkable experimental advances have recently
enabled studies of nonequilibrium dynamics of isolated,
strongly interacting quantum systems [1–3]. In such sys-
tems, it is commonly believed that a generic state far from
equilibrium eventually thermalizes, whereupon any initial
local information becomes unrecoverable [4–6]. While this
process of thermalization provides the basis of statistical
mechanics, it also poses challenges for building large-scale
quantum devices. Hence, it is of fundamental interest
to understand mechanisms to evade thermalization. Two
well-studied possibilities include many-body localization
in strongly disordered systems, and fine-tuned integrable
systems [7–9].
Recently, quench experiments with Rydberg atom arrays

[10–12] have discovered nonthermalizing dynamics of a
new kind [12]. Initialized in a high-energy Néel state, the
system exhibited unexpectedly long-lived, periodic reviv-
als, failing to thermalize on experimentally accessible
timescales; in contrast, other high-energy product states
exhibited thermalizing dynamics consistent with conven-
tional expectations.
These surprising observations have stimulated strong

theoretical interest [13–17]. Reference [13] showed that the
oscillatory dynamics stems from a small number of non-
thermal many-body eigenstates, which are embedded in a
sea of thermal eigenstates that generically obey the eigen-
state thermalization hypothesis (ETH) [4–6]. These atypi-
cal, ergodicity-breaking eigenstates were named ‘quantum
many-body scars’ (QMBS) in analogy to quantum scars in

single-particle quantum systems, which are similarly
nonergodic wave functions that concentrate along the
unstable, periodic trajectories of the counterpart classical
system [18]. Reference [14] firmed up this analogy by
showing that the long-lived revivals were also closely related
to an unstable periodic orbit in a variational, “semiclassical”
description of the quantum many-body dynamics.
Despite much theoretical effort, several key questions

regarding the nature of QMBS remain open. In particular,
owing to the slowdecay, theultimate fateof the revivals atvery
long times in the thermodynamic limit is not fully understood.
Another outstanding challenge is to understand the physical
mechanismprotecting scars in theRygberg chain andbeyond.
Reference [16] conjectured that the observed revivals arise
due to proximity to a putative integrable point. They demon-
strated a nontrivial deformation of the Rydberg-blockaded
Hamiltonian that results in a substantial modification of the
many-body level statistics with the entire spectrum becoming
accompanyingly nonthermal, which could be interpreted as
proximity to integrability. We note that earlier works [19,20]
have demonstrated the coexistence of ETH-violating states in
a generically ergodic spectrum, by explicitly constructing
many-body eigenstates with low entanglement at arbitrary
energy densities in a nonintegrable Affleck-Kennedy-Lieb-
Tasaki model. Also, it has been reported that quantum Ising
models with longitudinal field can exhibit weak thermal-
ization at low-energy densities [21–23].
In the present work, we show that the periodic

many-body revivals of the effective model describing the
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experiment [12] become extremely stable with a suitable
weak, quasilocal deformation, with the return probability of
the Néel state approaching unity within 10−6 for systems
with more than 30 particles. Remarkably, despite such
manifestly nonergodic dynamics at infinite temperature and
the strongly nonthermal character of the associated scarred
eigenstates, the bulk of the spectrum remains well thermal,
in contrast to the conjecture in Ref. [16]. Rather than being
integrable, the revival dynamics can be understood as the
coherent rotation of an emergent, large SU(2) spin that lives
within a special subspace of the many-body Hilbert space.
Our results strongly suggest the existence of a “parent”

Hamiltonian with perfect oscillatory dynamics. We prove
that, under generic settings, such perfect revivals impose
strong constraints on the structure of energy eigenstates,
necessitating the presence of some ETH-violating eigen-
states. This result directly relates observable nonequili-
brium dynamics to properties of energy eigenstates and
parallels the mechanism behind quantum scarring in
single-particle quantum chaos [18]. Finally, guided by
the emergent SU(2)-spin structure, we construct a solvable
toy model that explicitly hosts the phenomenology of
QMBS, which provides an intuitive explanation of their
origin in the constrained model.
Model and revivals.—The one-dimensional array of

Rydberg atoms in the experiments [12] is described
by a kinetically constrained [24,25] spin-1=2 chain with
Hamiltonian

H0 ¼
XN
i¼1

Cσxi C; ð1Þ

where σμi (μ ∈ fx; y; zg) are Pauli operators at site i, and
C ¼ Q

i½1 − ð1þ σzi Þð1þ σziþ1Þ=4� is a global projector
constraining the Hilbert space to spin configurations with-
out two adjacent up spins, j↑↑i, corresponding to the
regime of a strong nearest-neighbor Rydberg blockade [26]
in the experiments [12]. The dynamics is such that a spin
may flip only when both of its neighbors are in the j↓i state,

and the model is thus strongly interacting [27–29]. For
simplicity, we assume periodic boundary conditions and
only consider the constrained Hilbert space defined by
C ¼ 1, whose dimensionality grows asymptotically as ϕN

where ϕ ¼ ð1þ ffiffiffi
5

p Þ=2 is the golden ratio.
The model in Eq. (1) exhibits unexpected, long-lived

periodic revivals when initialized in the Néel state jZ2i ¼
j↑↓↑↓ � � �i. Despite its large energy density (corresponding
to infinite temperature), quench dynamics from this initial
state exhibits large recurrences of the Loschmidt echo
g0ðtÞ≡ jhZ2je−iH0tjZ2ij2 at multiples of a period τ with a
slow overall decay [Fig. 1(a)] [12–16]. This is accompanied
by a generally linear growth of the bipartite entanglement
entropy [Fig. 1(b)], which is slower compared to thermal-
izing initial states. As shown in Ref. [13], such dynamics
arise due to the existence of a band of special, nonthermal
“quantum many-body scarred” eigenstates that have
large overlaps with jZ2i. Furthermore, these special eigen-
states can be approximately constructed using an analy-
tical framework that was dubbed the forward scattering
approximation (FSA) [13,15]. In essence, FSA relies on
decomposing the Hamiltonian into a “raising” and “low-
ering” part, H0 ¼ Hþ

0 þH−
0 , with H�

0 ¼ P
i∈even Cσ

�
i CþP

i∈odd Cσ
∓
i C. Then, N þ 1 vectors jki0 ¼ βkH

þ
0 jk − 1i0

can be recursively defined from j0i0 ¼ jZ2i, where k ∈
f0; 1; 2;…; Ng and βk is the normalization coefficient,
spanning a subspace K. It has been shown that eigenstates
belonging to the special band predominantly live in
K [13,15].
Stabilizing revivals.—In order to stabilize the revivals of

jZ2i, we consider various perturbations that preserve the
particle-hole, time-reversal, and inversion symmetries of
the system (thus, pinning the energy of jZ2i). Generically,
most perturbations weaken the revivals. However, we find
that the following range-four deformation

δH2 ¼ −
X
i

h2Cσxi Cðσziþ2 þ σzi−2Þ; ð2Þ

FIG. 1. Nonthermalizing dynamics in constrained spin Hamiltonians. (a) Many-body fidelity gðtÞ as a function of time for the
Hamiltonian H0 without any perturbations and with optimal perturbations Eqs. (3) and (4). The inset shows the infidelity, 1 − gðtÞ.
(b) Half-chain bipartite entanglement entropy (EE) dynamics. At the optimal perturbation point, the EE shows bounded, oscillatory
dynamics. The inset shows the eigenvalues pμðtÞ of the half-chain reduced density matrix. Numerical simulations are performed with
N ¼ 32 starting from the Néel state. (c) Optimized perturbation strengths hd decay exponentially. Solid line indicates the analytical
ansatz function (4).
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with h2 ≈ 0.05 (derived below) significantly improves
fidelities of the revivals. Physically, this perturbation
corresponds to raising or lowering of a spin, depending
on the configuration of nearby spins. We note that this form
has been previously considered in Ref. [16], which numeri-
cally found that at h2 ≈ 0.024, the entire spectrum becomes
least thermal. In contrast, our value of h2 is approximately
twice larger, and the spectrum remains thermal, aside from
the scarred eigenstates (see below).
Our key observation is that δH2 partially cancels errors

arising in the FSA analysis. More specifically, the precision
of FSA, and therefore the fidelity of revivals, relies on the
dynamics from the jZ2i initial state generated by H�

0 to be
(nearly) closed in K. This condition would be exactly
achieved if the jki were eigenstates of the operator Hz

0 ≡
½Hþ

0 ; H
−
0 � but is generically not satisfied for 2 ≤ k ≤ N − 2.

We find that this error can be reduced by adding δH2 to the
Hamiltonian, and redefining the raising (lowing) operators
H�

0 ↦ H�
2 (hence also Hz

0 ↦ Hz
2), and the subspace K by

replacing σ�i ↦ σ�i ½1þ h2ðσziþ2 þ σzi−2Þ�. For example,
one can analytically show that the component of Hz

2j2i
perpendicular to j2i is significantly decreased when
h2 ¼ 1=2 − 1=

ffiffiffi
5

p
≈ 0.053 [30]. Indeed, this perturbation

strongly improves many-body revivals, leading to fidelity
gðτÞ ≈ 0.998 at its first maximum for N ¼ 32. Furthermore,
the linear growth of entanglement entropy is significantly
slowed.
The dramatic increase in revival fidelities owing to δH2

suggests that it might be possible to further enhance the
oscillations, making them perfect. It is natural to consider
longer-range perturbations of the form

δHR ¼ −
X
i

XR
d¼2

hdCσxi Cðσzi−d þ σziþdÞ; ð3Þ

which describe additional interactions between pairs of
spins separated by a distance d, with strengths hd. We
numerically optimize hd by maximizing the fidelity gðtÞ
under H ¼ H0 þ δHR at its first revival; see Fig. 1(c) for
N ¼ 20 with R ¼ 10. In Ref. [30], we show that qualita-
tively similar results are obtained from other optimization
methods, e.g., minimizing errors in FSA, etc. We find that
the optimized hd decay exponentially at large d and can be
very well approximated by the expression

hansatzd ¼ h0ðϕðd−1Þ − ϕ−ðd−1ÞÞ−2; ð4Þ

where ϕ is the golden ratio, and h0 is a single parameter
determining the overall strength. Henceforth, we will use
hd from Eq. (4) truncated at the maximum distance
R ¼ N=2, which allows us to perform a meaningful
finite-size scaling analysis. Numerical optimization of
the ansatz yields h0 ≈ 0.051. Below, we will derive this
value from certain algebraic relations amongH�,Hz within

the subspace K, which are appropriately redefined quan-
tities from H�

0 ; H
z
0;K accounting for the long-range terms

in an analogous fashion as the case for R ¼ 2 above.
Dynamics under the HamiltonianH ¼ H0 þ δHR makes

the jZ2i revivals even more stable, with 1 − gðτÞ ≈ 10−6 for
N ¼ 32 at the first revival [Fig. 1(a)]. Simultaneously, we
observe that the linear growth of the bipartite entangle-
ment entropy is significantly reduced and is barely
discernible [Fig. 1(b)]. A scaling analysis in [30] suggests
that the average rate of local thermalization, defined
by the decay of gðtÞ1=N , at late times vanishes in the
thermodynamic limit.
Dynamics constrains eigenstate properties.—The pos-

sible existence of a parent Hamiltonian leading to perfect
oscillatory dynamics, strongly and quantifiably constrains
the nonergodic nature of the quantum many-body scars.
Specifically, we can appeal to the following general
relation, whose proof is simple and given in Ref. [30].
Lemma.—Consider a generic many-body HamiltonianH

with extensive energy, kHk ¼ OðNÞ. If an initial state jΨ0i
under time evolution perfectly comes back to itself after
some finite time τ, independent of the system size N, i.e.,
jhΨ0je−iHτjΨ0ij ¼ 1, then jΨ0i can be decomposed into
OðNÞ energy eigenstates, and at least one of them, jϵi, has a
large overlap, jhϵjΨ0ij2 ≥ Oð1=NÞ.
If the periodic revival occurs for a physical state jΨ0i

with a finite energy density (that obeys the cluster decom-
position, so that the energy variance goes as N), such
as jZ2i in our case, this Lemma dictates the presence
of a high-energy eigenstate with a large overlap ∼1=N
with a low-entangled state. This constitutes a violation of
the ergodic scenario, where a high-energy eigenstate is
expected to be similar to a random vector in the exponen-
tially large Hilbert space.
In accordance with this result, the decomposition of the

Néel state jZ2i is seen to be dominated by N þ 1 special
eigenstates of H [Fig. 2(a)], which are much better
separated from the bulk than in the case of unperturbed
Hamiltonian. We also confirm that these eigenstates exhibit
nonergodic properties, such as the logarithmic scaling of
entanglement entropy, and can furthermore be constructed
by a straightforward extension of FSA with significantly
improved accuracy [15,30].
Importantly, while the deformed model shows very

stable revivals, the bulk of the spectrum remains thermal.
To illustrate this, we compute the r parameter associated
to the level repulsion of the energy levels Ei, hrii ¼
hminðδi; δiþ1Þ=maxðδi; δiþ1Þi, where δi ¼ Eiþ1 − Ei is
the level spacing and h·i indicates averaging over a
symmetry-resolved Hilbert space sector [31]. Figure 2(c)
shows a clear flow in system size toward hrii ≈ 0.53, the
Wigner-Dyson value associated with quantum chaotic
Hamiltonians, implying the coexistence of nonergodic
dynamics and an ergodic bulk. In addition, the distribution
PðsÞ of the unfolded level spacing s is consistent with the
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Wigner-Dyson class of the Gaussian orthogonal ensemble
[Fig. 2(b)].
Algebraic structure in the subspace K.—The almost

perfect fidelity revivals of the deformed Hamiltonian imply
H� and Hz form a closed algebra within the subspace K.
Indeed, we find numerically that

PK½Hz;H��PK ≈�ΔPKH�PK; ð5Þ

where PK ¼ P
k jkihkj is the projector onto K, and Δ is a

constant. As j0i ¼ jZ2i is an eigenstate of Hz, jki are also
approximate eigenvectors of Hz with harmonically spaced
eigenvalues Hz

k ¼ hkjHzjki with Δ ≈Hz
kþ1 −Hz

k. Thus,
upon a suitable rescaling, Hz plays the role of Sz in the
su(2) algebra, and H� play the role of raising and lowering
operators within K. As the dimensionality of K is N þ 1,
this implies that the operators form a spin s ¼ N=2
irreducible representation of the su(2) algebra, with jZ2i
and jZ0

2i ¼ j↓↑↓↑…i being the lowest and highest weight
states, respectively. To check this, we explicitly evaluated
the matrix elements hkþ 1jHþjki. Figure 3(a) confirms
that up to an overall multiplicative factor, the matrix
elements ofHþ reproduce those of the spin-raising operator
Sþ in this representation.
Thus, the virtually perfect oscillatory dynamics of jZ2i

can be understood as a large spin ðs ¼ N=2Þ pointing
initially in an emergent “z direction,” undergoing coherent
Rabi oscillations under the Hamiltonian H ¼ Hþ þH−,
which is akin to the Sx operator, with period τ ¼ 2π=

ffiffiffiffiffiffi
2Δ

p
.

We stress that the emergence of this SU(2) structure within

K is nontrivial, since the Hamiltonian H does not have any
rotational symmetry.
The identification of this emergent algebra allows us to

fix h0 of our ansatz for hd analytically. In particular, Hz
k

can be explicitly calculated for k ¼ 0, 1 in the thermody-
namic limit. Imposing a harmonic spacing, i.e., Hz

k ¼
Δðk − N=2Þ, leads to a nontrivial constraint [30]

ð1 − hÞ
�
1 − h − 16

X∞
n¼1

h2n

�
¼ 16

X∞
n¼1

h22n; ð6Þ

where h≡ 2
P

n≥2hnð−1Þn. This fixes h0 ≈ 0.0506656 in
our ansatz Eq. (4), which agrees very well with the
numerically optimized value. Furthermore, Eq. (6) deter-
mines the harmonic gap Δ ¼ ð1 − hÞ2 ≈ 0.835845, and,
correspondingly, the oscillation period τ ≈ 4.85962, which
are also in excellent agreement with those from exact
numerical simulations [30].
Toy model.—The above investigations reveal that an

emergent SU(2) structure within a special subspace under-
pins the many-body revivals. Motivated by this, we con-
struct a (solvable) toy model that exhibits similar
phenomenology: in this model, there is a band of non-
thermal eigenstates supporting perfect oscillatory dynamics
and exhibiting logarithmic entanglement, embedded in an
otherwise thermal spectrum.
Consider a system of N spin-1=2 particles on a ring. The

special subspace V of our model is defined as the common
null space of N projection operators Pi;iþ1 ¼ ð1 − σ⃗i ·
σ⃗iþ1Þ=4 onto neighboring pairs of singlets and is spanned
by the N þ 1 states of the largest spin representation s ¼
N=2 of the su(2) algebra. We enumerate the basis states

FIG. 2. (a) The overlap of jZ2i with energy eigenstates of H is
dominated byN þ 1 special ones (red circles), well separated from
the bulk. The density of data points is color coded. (b) Eigenvalue
level statistics of both H0 and H for N ¼ 32 closely follow that
of Wigner-Dyson class of the Gaussian orthogonal ensemble.
(c) Level statistics indicator hrii as a function of system size N
flows to its value in the Wigner-Dyson ensemble, indicating that
the bulk of the system remains ergodic. All data is for the
momentum k ¼ 0, inversion even sector.

FIG. 3. Emergent SU(2) structure in the subspace K. (a) Matrix
elements of the operator Hþ between consecutive vectors jki are
in excellent agreement with that of an appropriately rescaled
raising operator Sþ in the s ¼ N=2 representation of the su(2)
algebra shown as the solid curve. (b) The FSA basis vectors jki
are approximate eigenstates of the operatorHz with harmonically
spaced eigenvalues. The inset shows the residual of the eigen-
value spacing Δk ≡Hz

kþ1 −Hz
k away from its mean value. The

error bars are extracted from variances in the expectation values
of Hz in jki.
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js ¼ N=2; Sx ¼ mxi of V by eigenvalues of the Sx ¼P
i σ

x
i =2 operator, mx ∈ f−s;…sg.

Now, we take any Hamiltonian of the form

Htoy ¼
Ω
2

X
i

σxi þ
X
i

Vi−1;iþ2Pi;iþ1; ð7Þ

where Vij is a generic two-spin operator acting on spins
ði; jÞ, e.g., Vi;j ¼

P
μν J

μν
ij σ

μ
i σ

ν
j with arbitrary coefficients

Jμνij . Note that Htoy does not commute with Pi;iþ1 nor Sx;
thus, it does not have any obvious local symmetries.
However, it can be easily verified that js ¼ N=2;
Sx ¼ mxi are eigenstates with harmonically spaced ener-
gies E ¼ Ωmx. On the other hand, states in the Hilbert
space outside of V are affected by Vi−1;iþ2 terms and
hybridize to form ergodic eigenstates [30]. Now, initializ-
ing our system, e.g., in the lowest weight state jN=2; Sz ¼
−N=2i leads to rotations of a large spin around the x axis
with frequencyΩ, whose motion remains in V. We note that
our construction is reminiscent of work by Shiraishi and
Mori [32] where a set of local projectors was used to embed
certain nonergodic energy eigenstates into the bulk of a
many-body spectrum.
Clearly, Htoy exhibits all the features of perfect quantum

many-body scarring and is appealing as an intuitive under-
standing of the origin of scars in the constrained spin
models. However, there remain many open questions: first,
the explicit relationship between the constrained spin
model Eqs. (1)–(3) and the toy model Eq. (7) is not
obvious. The nonisomorphic Hilbert spaces, as well as
the nontrivial entanglement dynamics in the constrained
model [Fig. 1(b)], suggest that the mapping between
these two models, if exists, cannot be strictly local.
Second, it is highly desirable to find an analytic derivation
of the deformation, Eq. (3), that leads to the emergent
su(2) algebra in the constrained spin model, and understand
when such deformations exist for other local models.
We note that this emergent algebra is reminiscent of the
η-pairing symmetry that holds exactly in the Hubbard
model [33], which allows to construct exact eigenstates
at finite energy density with logarithmic [34] and sub-
thermal entanglement [35].
Summary and outlook.—To summarize, we have con-

structed a constrained spin model which exhibits nearly
perfect QMBS. The remarkably long-lived oscillatory
dynamics suggests that quantum scars remain stable in
the thermodynamic limit. We showed that the dynamics
can be understood in terms of a large, precessing SU(2)
spin, and used this intuition to introduce a family of toy
models with perfect scarring. In future work, it would be
highly desirable to find an analytical mapping between the
toy models and the constrained spin model. Moreover, the
approach developed here may be applied to stabilize other
types of quantum scars, in particular the ones originating
from the jZ3i state in the model (1) [15], as well as the

ones found in higher-spin constrained models [14].
Another exciting challenge is to find models in which
the MPS-based description of quantum scars trajectory
becomes exact [14]. In a broader context, special non-
thermalizing trajectories may have intriguing connections
to revivals or slow thermalization in strongly rotating
gravitational systems [36,37]. To understand the origin
of this nonthermalizing dynamics, it would be valuable to
establish whether QMBS can emerge from a dynamic that
goes through states with high entanglement.
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Velázquez, Universal time evolution of a Rydberg lattice
gas with perfect blockade, J. Phys. A 45, 325301 (2012).

[30] See Supplemental material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.122.220603 for de-
tailed information on the optimization of the deformation
parameters, additional numerical simulation results, scaling
analysis, and the proof of the lemma.

[31] Beacause our Hamiltonian has spatial translation and
inversion symmetries, we only diagonalize the symmetry
sector with total momentum zero and even inversion parity.
We exclude the degenerate energy eigenstates at zero energy
since they originate from symmetry considerations.

[32] N. Shiraishi and T. Mori, Systematic Construction of
Counterexamples to the Eigenstate Thermalization Hypoth-
esis, Phys. Rev. Lett. 119, 030601 (2017).

[33] C. N. Yang, η Pairing and Off-Diagonal Long-Range Order
in a Hubbard Model, Phys. Rev. Lett. 63, 2144 (1989).

[34] O. Vafek, N. Regnault, and B. Andrei Bernevig, Entangle-
ment of exact excited eigenstates of the Hubbard model in
arbitrary dimension, SciPost Phys. 3, 043 (2017).

[35] T. Veness, F. H. L. Essler, and M. P. A. Fisher, Quantum
disentangled liquid in the half-filled Hubbard model,
Phys. Rev. B 96, 195153 (2017).

[36] E. da Silva, E. Lopez, J. Mas, and A. Serantes, Collapse and
revival in holographic quenches, J. High Energy Phys. 04
(2015) 038.

[37] D. Jafferis (private communication).

PHYSICAL REVIEW LETTERS 122, 220603 (2019)

220603-6

http://arXiv.org/abs/1804.11065
https://doi.org/10.1038/nature11596
https://doi.org/10.1038/nature18274
https://doi.org/10.1038/nature24622
https://doi.org/10.1038/nature24622
https://doi.org/10.1038/s41567-018-0137-5
https://doi.org/10.1103/PhysRevLett.122.040603
https://doi.org/10.1103/PhysRevLett.122.040603
https://doi.org/10.1103/PhysRevB.98.155134
https://doi.org/10.1103/PhysRevB.98.155134
https://doi.org/10.1103/PhysRevB.99.161101
http://arXiv.org/abs/1810.00888
http://arXiv.org/abs/1810.00888
https://doi.org/10.1103/PhysRevLett.53.1515
https://doi.org/10.1103/PhysRevB.98.235155
https://doi.org/10.1103/PhysRevB.98.235155
https://doi.org/10.1103/PhysRevB.98.235156
https://doi.org/10.1103/PhysRevB.98.235156
https://doi.org/10.1103/PhysRevLett.106.050405
https://doi.org/10.1103/PhysRevA.95.023621
https://doi.org/10.1103/PhysRevA.95.023621
https://doi.org/10.1103/PhysRevLett.122.130603
https://doi.org/10.1103/PhysRevLett.53.1244
https://doi.org/10.1103/PhysRevLett.53.1244
https://doi.org/10.1103/PhysRevLett.53.958
https://doi.org/10.1103/PhysRevLett.85.2208
https://doi.org/10.1103/PhysRevLett.85.2208
https://doi.org/10.1088/1367-2630/10/4/045032
https://doi.org/10.1088/1367-2630/10/4/045032
https://doi.org/10.1103/PhysRevA.79.043419
https://doi.org/10.1088/1751-8113/45/32/325301
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.220603
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.220603
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.220603
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.220603
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.220603
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.220603
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.220603
https://doi.org/10.1103/PhysRevLett.119.030601
https://doi.org/10.1103/PhysRevLett.63.2144
https://doi.org/10.21468/SciPostPhys.3.6.043
https://doi.org/10.1103/PhysRevB.96.195153
https://doi.org/10.1007/JHEP04(2015)038
https://doi.org/10.1007/JHEP04(2015)038

