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We discuss eigenstate correlations for ergodic, spatially extended many-body quantum systems, in terms
of the statistical properties of matrix elements of local observables. While the eigenstate thermalization
hypothesis (ETH) is known to give an excellent description of these quantities, the phenomenon of
scrambling and the butterfly effect imply structure beyond ETH. We determine the universal form of this
structure at long distances and small eigenvalue separations for Floquet systems. We use numerical studies
of a Floquet quantum circuit to illustrate both the accuracy of ETH and the existence of our predicted
additional correlations.
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Introduction.—Statistical mechanics is one of the pillars
of modern physics. There is however a well-known dis-
juncture between the fundamental laws of classical and
quantummechanics, with reversible time evolution, and the
description of generic systems using ensembles defined
only by a small number of conserved quantities. Within
classical mechanics, a standard supporting argument is the
ergodic hypothesis. A chaotic system evolves over time to
explore uniformly all states compatible with the conserva-
tion laws, so that the microcanonical ensemble is the only
possible equilibrium ensemble with fixed energy. For
quantum systems, the notion of ergodicity is more prob-
lematic and even the definitions of quantum chaos and
integrability are under debate [1,2].
A fruitful direction is to characterize quantum systems

in terms of the spectral properties of their Hamiltonians or
evolution operators. Here, random matrix theory (RMT)
provides an important paradigm [3]. Quantum chaotic
systems can be identified, following the Bohigas-
Giannoni-Schmidt conjecture [4], from an RMTeigenvalue
distribution [5], while the Berry conjecture [6] proposes
that their eigenfunctions can be understood as a random
superposition of planewaves. Building on these foundations,
the eigenstate thermalization hypothesis (ETH) links the
properties of eigenvectors for many-body systems to stat-
istical mechanics and the dynamics of equilibration [7–9].
It constitutes a widely accepted expression of the notion of
ergodicity for many-body quantum systems [10,11].
By design, the ETH omits any spatial structure present

in the underlying system. Our aim in this Letter is to
understand universal features of eigenfunction correlations
in ergodic many-body systems that follow from spatial
structure and lie outside the ETH.
A single-particle counterpart to the questions we address

is provided by studies of eigenfunction correlations in the
metallic phase [12] or at the Anderson transition [13–16], in
models of disordered conductors without interactions.

In that case behavior is controlled by conservation of
probability density. By contrast, for interacting systems it is
the dynamics of quantum information that determines long-
distance correlations.
A direct characterization of such dynamics is provided

by the butterfly effect [17–19]. In the framework of
quantum mechanics, this phenomenon concerns the influ-
ence of a perturbation induced by the operator Ŷ on later
measurements of X̂. This is quantified by the value of the
commutator ½X̂ðtÞ; Ŷð0Þ�, and an indication of the strength
of the effect is given by

CðtÞ ¼ 1

2
h½X̂ðtÞ; Ŷð0Þ�†½X̂ðtÞ; Ŷð0Þ�i; ð1Þ

where h� � �i denotes the thermal average. If the perburba-
tion Y and the measurement X occur at points which are
separated in space, the commutator is initially vanishing.
More precisely, for short-range interactions in spatially
extended lattice models, the Lieb-Robinson bound [20]
ensures that CðtÞ remains exponentially small for a time
that grows linearly in the space separation l between the
supports of Y and X. In this language, the phenomenon of
scrambling is that Y necessarily influences XðtÞ at large t,
and CðtÞ approaches hŶ ŶihX̂ X̂i regardless of the specific
choice of Ŷ and X̂.
An important recent insight [21] is that nonzero CðtÞ

implies correlations in matrix elements of operators beyond
those captured by the ETH. We show here that these
correlations acquire a specific universal form for pairs of
widely separated local operators in spatially extended
systems. Moreover, since the timescale for propagation
of quantum information is long when l is large, these
additional correlations may be arbitrarily sharp in energy,
in contrast to those of the ETH.
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We focus on Floquet systems because they constitute the
simplest class. More generally, conservation laws are
reflected in correlations at large distances and long times,
and the simplest systems are ones with no conserved
densities. To escape conservation of energy density, it is
necessary to consider evolution with a time-dependent
Hamiltonian, and for there to be a fixed evolution operator
this time dependence should be periodic.
A convenient way to construct models with time-

dependent evolution operators is by using unitary quantum
circuits. These have yielded valuable insights into chaotic
quantum dynamics both for systems with an evolution
operator that is stochastic in time [22–24] and for Floquet
systems [25–27]. In particular, these studies have confirmed
the existence of two regimes for CðtÞ, distinguished by the
sign of vBjtj − l, where the butterfly velocity vB character-
izes the speed at which operators spread in space. We use
Floquet random unitary circuits in the following for numeri-
cal simulations.
ETH and relaxation.—We start by recalling the formu-

lation of the ETH and its connection to the autocorrelation
function of an observable. Consider a chaotic many-body
Floquet system with local interactions and Hilbert space
dimension N. Let Ŵ be the evolution operator for one
period, with eigenstates jαi and eigenphases Eα. According
to the ETH, the matrix elements of a local Hermitian
operator X̂ have the form [28]

Xαβ ≡ hαjX̂jβi ¼ X̄δαβ þ N−1=2hðΔαβÞRX
αβ; ð2Þ

where Δαβ ¼ Eα − Eβ modulo 2π. In this expression, X̄ is
the value to which the expectation of X̂ relaxes at long times

[29–31], hðωÞ is a smooth function of ω, and Rαβ are
Gaussian randomvariableswith zeromean and unit variance,
which are complex and independent for each pair α > β, and
real and independent for each α ¼ β. The Hermiticity of X̂
implies that hðωÞ is real and symmetric, and thatR�

αβ ¼ Rβα.
Without loss of generality, we consider traceless operators
so that X̄ ¼ 0. It is then useful to define

FðωÞ ¼ N−1
�X

αβ

jXαβj2δðΔαβ − ωÞ
�

av
ð3Þ

with the eigenstate average ð� � �Þav either effected by broad-
ening the delta function, or taken over an ensemble of
statistically similar systems. Using Eq. (2) and the mean
level spacing Δ ¼ 2π=N, we write FðωÞ≡ ð2πÞ−1½hðωÞ�2av.
FðωÞ characterizes relaxation of the (integer t) autocorrela-
tion function [32], since

hXðtÞXi ¼
Z

2π

0

dωe{ωtFðωÞ≡ hX2ifðtÞ; ð4Þ

where the thermal average appropriate for a chaotic
Floquet system is the infinite-temperature one, with
h…i≡ N−1Tr½…�. Decay of the autocorrelation function
on a microscopic relaxation timescale tR is encoded in fðtÞ,
which satisfies fð0Þ ¼ 1 and fðtÞ → 0 for t ≫ tR.
Generic form of four-point correlators.—Let X̂ and Ŷ be

local observables acting near the points x and y, with
l≡ jx − yj. In analogy with Eq. (3), we introduce the
correlator of four matrix elements

Gðω1;ω2;ω3Þ ¼ N−1
�X

αβγδ

XαβYβγXγδYδαδðΔαβ − ω3ÞδðΔβγ − ω2ÞδðΔγδ − ω1Þ
�

av
: ð5Þ

If one assumes [followingEq. (2)] that thematrix elements
of X̂ and Ŷ are uncorrelated randomvariables, then individual
terms XαβYβγXγδYδα are OðN−2Þ with random phase, and
only the term α ¼ β ¼ γ ¼ δ survives the average in Eq. (5),
implyingGðω1;ω2;ω3Þ ∼OðN−2Þ. In fact, a sum rule shows
that XαβYβγXγδYδα has a coherent OðN−3Þ component, as
well asOðN−2Þ fluctuations [33] (see alsoRef. [21]).Wewill
show that for largel this coherent component is concentrated
on the terms in which the two matrix elements of X̂ (and
also those of Ŷ) are between pairs of states with almost
opposite eigenphase differences. Specifically, the condition
for XαβYβγXγδYδα to make a large contribution to
Gðω1;ω2;ω3Þ is that ðEα − EβÞ ≈ −ðEγ − EδÞ, implying
also ðEβ − EγÞ ≈ −ðEδ − EαÞ.
To understand the form of Gðω1;ω2;ω3Þ we switch to

the time domain and consider ClðtÞ≡ 1
2
hj½X̂ðtÞ; Ŷ�j2i,

written as

ClðtÞ ¼ hŶ2X̂2ðtÞi − hX̂ðtÞŶ X̂ðtÞŶi: ð6Þ

The second term on the right-hand side is the out-of-time
order correlator (OTOC) [19,34]. ClðtÞ vanishes for short
times t and large separations l, while for large times the
OTOC is small and ClðtÞ approaches hX̂2ihŶ2i. Cor-
respondingly, the OTOC has the form hX̂ðtÞŶ X̂ðtÞŶi¼
hX̂2ihŶ2iklðl=vB− jtjÞ, where klðτÞ steps between klðτÞ¼
1 for τ large and positive, and klðτÞ ¼ 0 for τ large and
negative. The width Δτ of the step satisfies Δτ ≪ vBl for
large l [23,24].
We want to connect this behavior with the statistical

properties of matrix elements. We start by introducing a
generalized OTOC

hXðt3ÞYðt2ÞXðt1ÞYi≡ hX2ihY2igðt1; t2; t3Þ: ð7Þ
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This reduces to the standard OTOC for t1 ¼ t3 ≡ t and
t2 ¼ 0. We argue that the relation

gðt1; t2; t3Þ ≈ fðt3 − t1Þfðt2Þklðl=vB − jt1jÞ ð8Þ
holds for l ≫ vBtR, where for simplicity we take the
autocorrelation function fðtÞ of X̂ and Ŷ to be the same.
A simple justification is as follows (for details, see

Ref. [33]). We consider three regimes. In (i) jt2j ≫ tR and/
or jt3 − t1j ≫ tR. In (ii) and (iii) jt2j≲ tR and jt3 − t1j≲ tR.
In addition, in (ii) l − vBjt1 − t2j ≫ Δτ, while in
(iii) l − vBjt1 − t2j ≪ −Δτ. In (i) the left side of Eq. (8)
is zero because of scrambling [33], as is fðt3 − t1Þfðt2Þ
on the right side. In (ii) ½Yðt2Þ; Xðt1Þ� is small in norm
and we are dealing with averages taken approximately
simultaneously at x and y, which can be factorized.
Hence hXðt3ÞYðt2ÞXðt1ÞYi ≈ hXðt3ÞXðt1ÞihYðt2ÞYi and
gðt1; t2; t3Þ ≈ fðt3 − t1Þfðt2Þ; since klðl=vB − jt1jÞ ¼ 1
in (ii), Eq. (8) follows. In (iii) we can factorize
hXðt3ÞYðt2ÞXðt1ÞYi≃ hXðt3ÞihYðt2ÞXðt1ÞYi¼ 0, with cor-
rections that vanish in the limit jt3 − t1j=tR ≫ 1. In this
regime klðl=vB − jt1jÞ ¼ 0, so again Eq. (8) is satisfied.
Corrections to Eq. (8) are expected to be parametrically

small except near the butterfly front: the regime excluded
from (i)–(iii), in which jt2j≲ tR, jt3 − t1j≲ tR, and
jl=vB − jt1jj≲ Δτ. This has a width in t1 that is much
narrower at large l than the main scale l=vB.
Clearly, Gðω1;ω2;ω3Þ and gðt1; t2; t3Þ and are related by

Fourier transform, obtained by summing over the times t1, t2,
t3. The corrections to Eq. (8) affect only a vanishing fraction
of contributions for l ≫ vBtR. From this we deduce

Gðω1;ω2;ω3Þ ¼
lim
l→∞Fðω2ÞFðω3ÞKlðω1 þ ω3Þ; ð9Þ

where we have introduced the Fourier transform

KlðωÞ ¼
1

2π

X
t

klðl=vB − jtjÞe−iωt: ð10Þ

Our discussion of the form of klðtÞ implies that KlðωÞ is
maximum at ω ¼ 0 and has a width in frequency of order
vB=l. At large l, since Δτ ≪ l=vB, we can represent klðτÞ
as a step function and obtain the scaling form

lim
l→∞

1

l
Klðu=lÞ ¼

sinðu=vBÞ
2πu

; ð11Þ

dependent only on the butterfly velocity of the model.
Equations (9) and (11) constitute our main theoretical

results. They apply to a pair of operators acting at points
separated by l ≫ vBtR. In this limit they show that non-
Gaussian correlations of matrix elements, which are not
modeled by the ETH, have universal structure in frequency.
This structure appears on a much finer scale (vb=l) than the
one (1=tR) relevant for the Gaussian correlations that are
represented by the ETH.

Model.—To test these ideas in a computational study, we
consider a one-dimensional L-site Floquet unitary circuit
[25] generated by Haar-distributed random unitaries, where
the quantum states at each site span a q-dimensional Hilbert
space. The circuit is defined by a qL × qL Floquet operator
W ¼ W2 ·W1, where W1 ¼ U1;2 ⊗ U3;4 � � � ⊗ UL−1;L and
on an open chain W2 ¼ 1q ⊗ U2;3 ⊗ U4;5 � � � ⊗ 1q. Here
each Ui;iþ1 is a q2 × q2 random unitary matrix acting on
sites i and iþ 1. We note that the circuit can be defined on a
closed chain by the replacement W2 → W2 ⊗ U1;L. This
model has no conserved quantities or discrete symmetries.
Moreover, many dynamical quantities can be computed
analytically for q → ∞ [25]: in this limit the autocorrela-
tion function decays to zero in a single Floquet period
(tR → 0) and the OTOC exhibits a light cone with vB ¼ 2
and no broadening of the front. At finite q, the Floquet
random circuit provides an ideal setting to investigate the
general phenomenology of Eqs. (9) and (11).
Numerical simulations.—We focus on q ¼ 2 where the

space of single-site operators is spanned by Pauli operators
σ̂jα, with α ¼ x, y, z and j ¼ 1;…; L. We consider system
sizesL ¼ 4; 6;…; 12 and perform the full diagonalization of
the unitarymatrix Ŵ.We first study the statistics of thematrix
elementsXαβ and the functionFðωÞ for the operator X̂ ¼ σ1z,
using a closed chain in order to minimize boundary effects.
The short-time behavior of the autocorrelation function
can be computed analytically [25] giving hXðtÞXi ¼ 1, 0,
6.67 × 10−3, and 3.87 × 10−3 for t ¼ 0, 1, 2, and 3. Hence in
this model tR is short and FðωÞ is almost constant. For this
reason,weneglect thedependenceofhðωÞonω andcompute
the combined probability distributions of all off-diagonal
matrix elements, and of all diagonal elements. As shown in
Fig. 1, ETH gives an outstandingly accurate description for
both quantities. (For similar results in a Hamiltonian system,
see, e.g., Refs. [35,36].)
Next we turn to the four-point correlators and test the

predictions of Eqs. (9) and (11). To maximize the separa-
tion l ¼ L − 1 at a given L, we choose two operators
acting on sites at opposite ends of an open chain:

X̂ ¼ σ̂1z ; Ŷ ¼ σ̂Lz : ð12Þ
An overview of the data for Gðω1;ω2;ω3Þ is given in
Fig. 2. For the largest accessible system size, L ¼ 12, in
each realization we sample 108 contributions to each ω bin.
Additionally, we average Gðω1;ω2;ω3Þ over around 700
realizations. The data show the expected narrow maximum
near the plane ω1 þ ω3 ¼ 0. For a quantitative analysis, we
project Gðω1;ω2;ω3Þ onto two orthogonal lines. First, we
have as an identity (taking ω1 þ ω3 − ω mod 2π)

KlðωÞ¼
Z
½−π;π�3

dω1dω2dω3δðω1þω3−ωÞGðω1;ω2;ω3Þ:

Second, we define
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Jðω2Þ ¼
Z
½−π;π�2

dω1dω3Gðω1;ω2;ω3Þ: ð13Þ

From Eq. (9) we expect JðωÞ ≈ FðωÞ.
Results for both functions are presented in Fig. 3, and

match excellently the expectations we have described. The
data in the main panel show a perfect collapse of the central
peak for all accessible system sizes, in agreement with the
scaling form of Eq. (11). The left inset shows a fit of the
central peak in KlðωÞ to the Fourier transform of the step
function Θðjl=vB − tjÞ. Since t takes only integer values,
the fit yields a range of possible values for the butterfly
velocity: from L ¼ 10, we obtain vB ∈ ½1.125; 1.286�. This
range includes the value for a random quantum circuit,
vB ¼ 2ðq2 − 1Þ=ðq2 þ 1Þ or vB ¼ 1.2 at q ¼ 2 [23,24].

The deviations of the data from the fitting function away
from the central peak are due to the diffusive broadening of
the step in the OTOC (for these system sizes Δτ ∼ 1).
The right inset of Fig. 3 shows JðωÞ vs ω. In this case

data for all system sizes collapse without rescaling ω
with l, as anticipated from Eq. (9) but in contrast to
behavior forKlðωÞ. We expect in addition from Eq. (9) that
JðωÞ ¼ FðωÞ. In fact, the peak in JðωÞ near ω ¼ 0 is much
more pronounced than is shown for FðωÞ in Fig. 1. The
discrepancy arises from different choices of boundary
conditions: periodic for Fig. 1, open for Fig. 3. Viewed
in the time domain, decay of fðtÞ is slower for an operator
at the end of an open chain than with periodic boundary
conditions, because its spreading is hindered. The right
inset of Fig. 3 also shows that FðωÞ for an operator at the
end of an open chain has a very similar form to JðωÞ.
Finally, and crucially, we show support for our main

result in Fig. 4. The product form given in Eq. (9) indeed
provides a very accurate representation of Gðω1;ω2;ω3Þ.

FIG. 2. Histogram ofGðω1;ω2;ω3Þ as a function of ω1, ω2, and
ω3, for L ¼ 12 with 20 bins along each axis. Larger values of
jGðω1;ω2;ω3Þj are shown with heavier shading.

FIG. 3. Main panel: l−1KlðωÞ vs lω for L ¼ 6, 8, 10, 12 in
blue, green yellow, and red, respectively. Left inset: KlðωÞ vs ω
(red) compared with Fourier transform S̃ of the step function
Θðjl=vb − tjÞ (gray) for L ¼ 12. Right inset: JðωÞ vs ω for
L ¼ 10, 12 (yellow and red) compared with FðωÞ vs ω for X̂
acting on a site at the end of an open L ¼ 12 chain (black).

FIG. 1. Comparison of predictions from the ETH with
numerical results for Floquet quantum circuits (see text for
definitions). Main panel: Scale-collapsed probability distribution
PoffðN1=2jXαβjÞ of the modulus of off-diagonal elements Xα;β of a
local operator, with N ¼ 2L. Points: data for L ¼ 6, 8, 10 in blue,
green, yellow, respectively. Line: complex Gaussian distribution,
as expected from the ETH. Bottom inset: Scale-collapsed prob-
ability distribution of the diagonal elements PdiagðN1=2XααÞ.
Points: data for system sizes as in main panel. Line: real Gaussian
distribution, as expected from ETH. Top inset: FðωÞ vs ω for the
same system sizes.

FIG. 4. To test Eq. (9), we plot with offsets Gðω1;ω2;ω3Þ
(blue) and Fðω2ÞFðω3ÞKlðω1 þ ω3Þ (red) vs ω1 for L ¼ 12 at
ω2 ¼ −1.73. Plots for other values of ω2 and ω3 show similar
agreement.
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Discussion.—It is natural to ask about the behavior of other
correlators. Within the Floquet model we have described,
nonzero correlators must have even numbers of operators
acting at each site, since odd powers vanish under the
ensemble average. The only two-point correlator is hence
hX̂ðtÞX̂i. Besides the generalized OTOC, there is a second
four-point correlator,with the form hX̂ðt3ÞX̂ðt2ÞŶðt1ÞŶi. This
correlator has no long-time structure and therefore no small-
frequency features. It is captured for largel by theETH, since
it factorizes in this limit as hX̂ðt3ÞX̂ðt2ÞihŶðt1ÞŶi. Hence
Gðω1;ω2;ω3Þ is unique in its sharp ω-space structure.
We expect the phenomenology we have described to be

very generic, as it arises from fundamental features of
chaotic dynamics in spatially extended systems. In par-
ticular, our conclusions will also hold in higher spatial
dimensions. In addition, although we have treated the
simplified context of Floquet systems, we expect our
conclusions to apply with some caveats in the presence
of conserved quantities. To be specific, consider a system
with a time-independent Hamiltonian Ĥ and energy as
the only conserved density, and examine matrix elements
of operators between eigenstates of Ĥ. In this case, the
appropriate thermal average at inverse temperature β is
h·iβ ≡N −1Tr½·e−βĤ�. A consequence, as for the standard
ETH, is that all spectral correlators, including the functions
F, G, and Kl, as well as vB, acquire a smooth temperature
dependence. Following Refs. [37,38], we expect that for
operators X̂ and Ŷ that do not couple to the conserved
charge, our conclusions will hold unchanged. On the other
hand, if X̂ or Ŷ couple to the energy density, both the on-site
relaxation in Eq. (4) and the OTOC in Eq. (6) will present
power-law tails. This slow dynamics may affect [39] the
separation of scales l ≫ vBtR that we exploited in deriving
Eq. (8) and we leave further analysis for future studies.
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