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Dynamically cross-linked semiflexible biopolymers such as the actin cytoskeleton govern the
mechanical behavior of living cells. Semiflexible biopolymers nonlinearly stiffen in response to mechanical
loads, whereas the cross-linker dynamics allow for stress relaxation over time. Here we show, through
rheology and theoretical modeling, that the combined nonlinearity in time and stress leads to an
unexpectedly slow stress relaxation, similar to the dynamics of disordered systems close to the glass
transition. Our work suggests that transient cross-linking combined with internal stress can explain prior
reports of soft glassy rheology of cells, in which the shear modulus increases weakly with frequency.
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Biopolymers form the scaffolds of life, providing rigidity
to both cells and the extracellular matrix [1–3]. An
important characteristic of intra- and extracellular biopol-
ymers [4–6] is their high bending rigidity relative to most
synthetic polymers. This feature leads to a competition
between entropic and energetic effects that results in a
range of material properties not captured by traditional
polymer physics. One such property is the highly nonlinear
elastic response of biopolymer networks, in which the shear
rigidity can increase by orders of magnitude upon strains of
only a few percent [7]. For permanently cross-linked
semiflexible polymer networks, this phenomenon is well
accounted for by the compliance due to transverse bending
fluctuations that become suppressed under a load [8,9].
The interactions of biopolymers are also more complex

than for traditional polymer materials. An example is the
transient cross-linking by specialized crosslinker proteins
that takes place in the actin cytoskeleton of the cell, which
causes stress relaxation on timescales longer than the
typical cross-linker unbinding time [10,11]. The resulting
viscoelastic flow does not follow a simple Maxwell model
with a single relaxation time, but instead follows power law
behavior characteristic of a broad spectrum of relaxation
times [12,13].
Here, we show that the nonlinear response of transiently

cross-linked actin networks exhibits an unexpectedly slow
stress relaxation, resembling the dynamics of soft glassy
systems [14]. As reported in Ref. [15] and a large body of
follow-up work on cell rheology [16–21], the shear
modulus of cells is characterized by a shear modulus that
increases as a weak power-law of frequency, with expo-
nents as low as 0.1, for which the term “soft glassy
rheology” has been used. Interestingly, in contrast with

prior models of soft glassy rheology of cytoskeletal net-
works [22–24], here we show that exponents below 0.5 are
only observed in the nonlinear regime. We show that the
time- and stress-dependent response of actin networks is
consistent with a model that accounts for both the nonlinear
stiffening [7,8] and transient cross-linking [13] of semi-
flexible polymers. Our results can provide an explanation
for the many prior reports of slow relaxation and near solid-
like viscoelastic response in reconstituted cytoskeletal
networks [22,25] and in living cells [15–21]. While these
phenomena have been discussed in the context of phe-
nomenological soft glassy rheology [15,16,19,22,23,25], a
more microscopic mechanism has been lacking. The
present Letter suggests that the glassy dynamics in the
cytoskeleton are a natural consequence of transient cross-
links, combined with prestress.
Using small amplitude oscillatory rheology, we measure

the storage (crosses) and loss moduli (circles) in the
absence of prestress (black data points) as a function of
frequency for reconstituted actin networks, cross-linked
by the dynamic linker α-actinin-4 (ACTN4), a prominent
cross-linker in human cells [26,27] [Fig. 1(c)]. Qualitatively
consistent with previous experiments and modeling [13],
we find a power law frequency dependence of the moduli at
frequencies below 1 Hz (black line) with an exponent close
to 1

2
. The 1

2
exponent reflects the broad spectrum of relaxation

times from the unbinding and rebinding of multiple cross-
linkers along a filament [Fig. 1(a)] [13]. Theviscousmodulus
becomes less frequency dependent for higher frequencies
(>1 Hz), and is expected to peak at the cross-linker unbind-
ing rate (not observed here and therefore likely beyond
10 Hz) as cross-linker unbinding becomes increasingly
unlikely [13].
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Next, to probe the nonlinear response, we measure the
differential modulus ∂σ=∂γ, where σ is the shear stress and
γ is strain. We do so by superimposing a small amplitude
oscillation on an 8 Pa prestress [red data points in Fig. 1(c)].
We find that both real (storage) and imaginary (loss) moduli
are larger in the presence of prestress by 1–2 orders of
magnitude than in the absence of prestress over the entire
frequency range. We attribute this change to the stress
stiffening response of semiflexible polymer networks to
suppression of filament bending fluctuations [8,9]. More
surprisingly, we find that both the storage and loss moduli
are significantly less frequency-dependent in the presence
of prestress than the 1

2
power law observed in the absence of

prestress.
To find out the origin of the stress-dependent changes in

the time-dependent rheology, we systematically vary the
prestress over a range from 0.1 to 8.0 Pa with a super-
imposed small amplitude oscillation at different frequen-
cies (ω¼0.01;…;10Hz). We find that both the differential
storage and loss moduli increase as a function of prestress
over all frequencies [Fig. 2]. This increase is consistent
with an asymptotic σ3=2 power-law stress stiffening (indi-
cated by the blue dashed line), as previously identified both
experimentally and theoretically for semiflexible polymer
networks at high σ [5,7]. To test the agreement with the
model more quantitatively, we fit the differential storage

modulus at each frequency to the following cross-over
function:

K0 ¼ Gð1þ σ=σ0;trÞ3=2; ð1Þ

where GðωÞ is the linear storage modulus and σ0;tr is the
characteristic stress for the onset of stiffening at a given
frequency. Remarkably, although the model for the σ3=2

stiffening was developed and confirmed previously for the
nonlinear elasticity of permanently cross-linked networks,
it accurately captures the nonlinear elastic response of
transiently cross-linked actin networks as well. However,
whereas the onset stress for nonlinearity of permanently
cross-linked networks is independent of frequency [5,7],
we find that this onset systematically increases with
frequency for transiently cross-linked semiflexible polymer
networks [Fig. 3(a)].
In order to capture both the frequency and the stress

dependence of the shear moduli, we propose a model in

(a) (b)

FIG. 2. Time-dependent stiffening. The differential storage (a)
and loss (b) moduli of an ACTN4 cross-linked actin network are
plotted against the applied stress and color coded as a function of
frequency from 0.01 Hz in black to 5 Hz in red in seven
logarithmically spaced steps. The solid lines represent fits to
Eq. (1). The blue dashed line represents the 3

2
power law that is

characteristic of permanently cross-linked networks [7].
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FIG. 1. Time-dependent viscoelastic response of transiently
cross-linked semiflexible polymer networks. (a) Schematic show-
ing actin filaments (black lines) connected by cross-linkers (black
dots). Left: filament before and after a cross-linker remodeling
event (green and red). Right: such events are unlikely for
frequencies larger than the cross-linker unbinding rate ωoff .
(b) Schematic regime diagram showing three different viscoelas-
tic regimes as a function of frequency and applied stress. At low
stress, in the linear regime, networks either behave as permanent
networks exhibiting a plateau or cross-link kinetics lead to a
frequency-dependent transient regime. Our work shows that,
beyond an onset stress, a single length scale that is nonlinear in
both stress and frequency governs the mechanics. This onset
stress decreases for frequencies below the cross-linker unbinding
rate as the effective cross-linker distance decreases. (c) The
storage (crosses) and loss moduli (circles) of a cross-linked actin
network against frequency in the absence of prestress (black) and
for 8 Pa prestress (red). The line indicates a 1

2
power law.

(a) (b)

FIG. 3. Mastercurve behavior of the time and stress dependent
viscoelastic behavior of actin networks. (a) The onset stress for
stiffening of actin networks follows a 1

3
power law dependence on

frequency (black line), consistent with Eq. (6). (b) Stress-stiffening
curves over all frequencies can be collapsed onto a single master-
curve using Eq. (9). The color coding is identical to Fig. 2.
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which we combine the transient nature of the cross-linkers
with the nonlinear force-extension behavior of the semi-
flexible actin filaments. For permanently cross-linked net-
works, the storage modulus in the linear regime is
dependent on the distance between cross-linkers, lo [8]:

G0 ∼ ρκlp=l30; ð2Þ

where lp is the persistence length of the filament, ρ the
filament length density per volume, and κ the bending
rigidity of the filament. In the nonlinear regime, the
modulus becomes independent of the distance between
cross-linkers, but is defined by the length scale beyond
which bending wavelengths are suppressed due to the
filament axial tension τ [2]:

lτ ∼
ffiffiffiffiffiffiffi

κ=τ
p

: ð3Þ

As filament axial tension increases with the applied stress,
σ ∼ ρτ, the relevant bending wavelengths become smaller
and the storage modulus increases nonlinearly with the
applied stress:

K ∼ ρκlp=l3τ ∼
ρκlp
l30

ðσ=σ0Þ3=2; ð4Þ

where σ0 ∼ ρκ=l20 is the threshold stress at which the network
begins stiffening as the typical filament bending wavelength
decreases below the typical crosslinker distance.
The important difference between transient networks

and permanently cross-linked ones is that the effective
cross-link distance increases with time as longer wave-
length bending modes relax due to cross-link unbinding
and rebinding [13]. This can be captured by an effective
cross-link distance

ltr ∼ ω−1=6 > l0 for ω < ωoff ; ð5Þ

which leads to a ω0.5 dependence of the shear modulus, as
reported experimentally and theoretically in Ref. [13].
Here, ωoff is the cross-link unbinding rate. As a result,
the onset for stress stiffening now depends on frequency
according to

σ0;tr ∼ ρκ=l2tr ∼ ω1=3; ð6Þ

consistent with Fig. 3(a). In order to capture both transient
and permanent regimes, we let

ltr ¼ l0ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωoff=ω
p

Þ1=3: ð7Þ

Strictly speaking, this is correct in the asymptotic plateau
(ω ≫ ωoff ) and transient (ω ≪ ωoff ) regime, while it is
only approximate in the crossover regime at intermediate
frequencies.

Similarly, in order to approximate the crossover from the
linear to the nonlinear regime, we let

lτ ¼ ltr½1þ ðσ=σ0;trÞ�−1=2: ð8Þ
Again, strictly speaking, this is correct for linear (σ ≪ σ0;tr)
and highly nonlinear (σ ≫ σ0;tr) regimes, although we
show below that it approximates well the behavior of actin
networks over the entire experimentally accessible range of
stress.
The resulting expression for K0 is

K0 ∼ ρ
κlp
l30

½1þ ðσ=σ0;trÞ�3=2
ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωoff=ω
p Þ : ð9Þ

This model accurately describes the observed trends in the
nonlinear rheology of actin networks. First, the theory
predicts a ω1=3 scaling of onset stress for nonlinearity
[Eq. (6)], consistent with our experimental data [Fig. 3(a)].
Second, using Eq. (9), we successfully collapse all stress-
stiffening data [Fig. 3(b)]. Lastly, we use Eq. (9) to
accurately fit the differential storage modulus as a function
of frequency over all prestresses [Fig. 4(a)]. Interestingly,

(a) (b)

(c) (d)

FIG. 4. Frequency dependence of stressed actin networks. The
differential storage (a) and loss (b) moduli of an ACTN4 cross-
linked actin network are plotted against the applied frequency and
color coded as a function of prestress from 0.2 Pa in black to
7.2 Pa in red with 1 Pa steps. The stars are data in the absence of
prestress. The blue line represents the 1

2
power law characteristic

of networks in the absence of stress [13]. The solid lines represent
fits to K0ðσ;ωÞ according to Eq. (9) (see Fig. S1 for the fitting
parameters [28]). The differential moduli are fitted between 0.01
and 1 Hz with an empirical power law αðσÞωβðσÞ. The exponent β
(c) and prefactor α (d) are shown as a function of stress.
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usingωoff as a free parameter, we find that the characteristic
frequency decreases as the applied stress is raised (Fig. S1
in the Supplemental Material [28]). This result is consistent
with earlier rheological measurements on networks cross-
linked by ACTN4 [31], and suggests catch bonding [32]
where the cross-linker unbinding rate decreases with
force [33].
We find that the elastic response of transiently cross-

linked actin networks is well captured by a simple model
that combines prior models for the linear viscoelasticity of
transient gels and the nonlinear elasticity of permanent
networks. Key to our model is a single length scale defined
by Eqs. (7) and (8) that characterizes the upper limit of
fluctuating wavelengths. This length depends on both time
and stress. Together, these effects result in a frequency
dependence that becomes weaker with increasing stress
[Figs. 4(a) and 4(b)]. The K ∼ ω1=2 power law predicted by
Ref. [13] is only observed in the absence of prestress
[Fig. 1(c)]. We quantify the dependence of stiffening on
stress by fitting the data with an empirical power law
Kðσ;ωÞ ¼ αðσÞωβðσÞ commonly used in the cell rheology
literature [15,17–19,21]. We find that the prefactor α
increases for the loss modulus and, even more steeply,
for the storage modulus as the network stiffens, such that
the network becomes more solidlike with increasing stress
[Fig. 4(d)]. We also find that the exponent β decreases from
0.5 in the absence of stress to 0.1 at 8 Pa [Fig. 4(c)]. This is
in contrast to the mechanics of permanently cross-linked
networks [8,9] that are time independent except at very
high frequencies, typically beyond 100 Hz, where the
viscous drag of the fluid controls filament relaxation
[34–37]. In that regime, an exponent β of 3

4
is expected,

but this can decrease to 1
2
under stress [38]. Recently,

Ref. [24] proposed a model for the nonlinear response of
transient semiflexible networks, but no specific relationship
between the stress and the exponent governing the time
dependence was predicted.
Other work on stressed dynamically cross-linked actin

networks has focused on the effect of force-induced linker
(un)binding [31,39,40], sliding of cross-linkers along
filaments [41,42], and the effect of shear-induced filament
alignment [43]. While our minimal model does not include
such effects, it is able to accurately capture the stress and
frequency dependence of the nonlinear elastic response of
actin networks. In future work, it would be interesting to
include the additional microscopic effects mentioned above
[31,39–42,44], as well as to quantitatively understand the
differential loss modulus,K”, for example by using detailed
network simulations of transiently connected semiflexible
polymers [45].
We find that stressed semiflexible polymer networks

exhibit power law dynamics with a small exponent
(β ∼ 0.1). Remarkably, mechanical experiments on living
cells have revealed similar power law dynamics [15–21].
These mechanical properties are reminiscent of observations

on a range of disordered systems close to the glass transition
[14]. The soft glassy rheological properties found in cells
have been phenomenologically described by assuming a
broad distribution of microscopic relaxation timescales
[15,22,23,25]. Whilst this phenomenological description
can account for the experimental data [15,17–22,25], it
offers no insight into the microscopic processes governing
these dynamics.Herewe suggest that theglassy dynamics are
a natural consequence of transient cross-links, combined
with prestress. This mechanism is different from the micro-
scopic mechanism underlying soft, glassy rheology in
systems such as colloidal gels, where particle density, rather
than prestress, controls the stress relaxation exponent [46].
Myosin motor-driven contractility is a likely source for

such prestress in the cell [38,47]. Consistent with our
results, experiments on cells have revealed that the power
law exponent of the frequency dependent shear moduli
decreases with the internal stress generated by actomyosin
contractility [21]. Remarkably though, whereas the recon-
stituted networks become more solidlike with prestress
[Fig. 4(d)], mechanical experiments on cells have shown
that the loss modulus increases more rapidly than the
storage modulus as a function of myosin-driven tension
[21]. We speculate that external stress as imposed in our
rheological experiments differs from internal stresses gen-
erated by myosin motors, as motors not only cause
contractility but also fluidize networks via filament sliding
[48,49] and severing [50,51].
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