
 

Two-Dimensional Conical Dispersion in ZrTe5 Evidenced by Optical Spectroscopy
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Zirconium pentatelluride was recently reported to be a 3D Dirac semimetal, with a single conical band,
located at the center of the Brillouin zone. The cone’s lack of protection by the lattice symmetry immediately
sparked vast discussions about the size and topological or trivial nature of a possible gap opening. Here, we
report on a combined optical and transport study of ZrTe5, which reveals an alternative view of electronic
bands in this material. We conclude that the dispersion is approximately linear only in the a-c plane, while
remaining relatively flat and parabolic in the third direction (along the b axis). Therefore, the electronic states
in ZrTe5 cannot be described using the model of 3D Dirac massless electrons, even when staying at energies
well above the band gap 2Δ ¼ 6 meV found in our experiments at low temperatures.
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In materials with topological phases, small energy scales
can play an important role. ZrTe5 is an excellent example.
The band gap opening at the center of the Brillouin zone is
caused by a strong spin orbit interaction [1], making the gap
topological, be it positive, zero, or negative. ZrTe5 is a
layered compound with an extremely high mobility, and
there is consensus in scientific literature that the low energy
bands in ZrTe5 are conical [2–7]. However, the delicate
balance of these energy scales has led to many contra-
dicting reports. Several possible topological phases were
predicted or reported in ZrTe5, amongst them, a quantum
spin Hall insulator [1], weak topological insulator (WTI)
[8], strong TI (STI) [9–11], and a three-dimensional (3D)
Dirac semimetal [5,6]. All of these possible phases are
linked to a key question: What is the true dimensionality of
the conical dispersion in ZrTe5? The detailed band structure
has not yet been established, nor is it known whether the
linear dispersion is, indeed, three dimensional. Band
structure calculations critically depend upon fine structural
details [12]. Angle-resolved photoemission spectroscopy
(ARPES) measurements have shown linearly dispersing
bands in the a-c planes, and a strongly varying chemical
potential as a function of temperature [3,4]. How the shift
of chemical potential measured at the surface relates to the
bulk properties and what the dispersion in the out-of-plane
direction are open questions.
In this Letter, we demonstrate a two-dimensional conical

dispersion and show the temperature-induced shift of the

chemical potential across the gap in ZrTe5. Our findings are
based on bulk-sensitive techniques, optical spectroscopy,
and magnetotransport. We address low-energy states due to
low carrier density in our samples. We show that the free-
carrier optical plasmon energy depends nonmonotonically
on temperature. The sign of the dominant carriers changes
from high-temperature thermally activated holes to low-
temperature electrons. Most importantly, we find that the
energy dispersion cannot be linear in all three directions.
Rather, our optical conductivity points to a linear dispersion
in the a-c plane and a parabolic dispersion along the b axis.
We construct an effective Hamiltonian explaining both the
optical and transport properties at low temperatures. Our
results place a strong doubt over the commonly accepted
picture of a 3D Dirac dispersion.
Measurements were performed on samples synthesized by

two different methods, self-flux growth [2] (sample A) and
chemical vapor transport [13] (sampleB), leading to different
low-temperature carrier concentrations. The transport proper-
ties aremeasured using a customsetup. Themagnetotransport
data are obtained using quantum design physical property
measurement system. Optical reflectance is measured using
FTIRspectroscopy,with in situgoldevaporation [14].At high
energies, the phase was fixed by ellipsometry. We use
Kramers-Kronig relations to obtain the frequency-dependent
complex dielectric function ϵðωÞ, where ω is the incident
photon frequency. Magnetotransmission was measured
using a superconducting coil, with a sample at T ¼ 2 K in
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a low-pressure helium exchange gas. Analysis of the optical
spectra was performed using REFFIT software [15].
The orthorhombic structure of ZrTe5 is shown in

Fig. 1(a). The most conducting direction is the a axis,
running along the Zr chains. The layers are stacked along
the least conducting b direction. The conduction and
valence bands are based upon the tellurium p orbitals.
Figures 1(b)–1(d) show electronic transport along the a
axis for samples A and B. Panel 1(b) shows resistivity ρ
and thermoelectric power S, 1(c) RH, 1(d) single band
carrier density n, and Hall mobility μH, each as a function
of temperature. A dramatic change occurs in each quantity
at temperature T 0: T 0

A ¼ 80 K for sample A, and T 0
B ¼

145 K for sample B. These temperatures correspond to a
maximum in ρ, a sign inversion in S, RH, and μH, and a
minimum in n. The resistivity peak appears to be linked to
a minimum in carrier density at T 0, with a concomitant
crossover from electron to hole-dominated conduction.
The metallic resistivity well below T 0 is described

by ρ ¼ ρ0 þ AT2, with AA ¼ 0.1 μΩ cm=K2 and AB ¼
0.036 μΩ cm=K2 for sample A and sample B, respectively.
The coefficient A is inversely proportional to EF [16],
indicating that the Fermi level in sample A is lower than in
sample B. The Mott formula SðTÞ ¼ k2BT=ðeEFÞ gives an
estimate of the low-temperature Fermi levels for samples A
and B, EA

F ∼ 14 meV, and EB
F ∼ 23 meV. The lower Fermi

level in sample A is consistent with a lower carrier density
[Fig. 1(e)]. The Hall coefficient, carrier density, and Hall
mobility are obtained in a single band analysis in the B → 0

limit. They strongly differ for the two samples below T 0.
In sample A, the mobility at 2 K is extremely high:
μAH ¼ 0.45 × 106 cm2=ðV sÞ, whereas the carrier density
is nA ¼ 3 × 1016 cm−3, surprisingly low for a metallic
system. A two-band model [17,23] shows that minority
carriers contribute very little to low-temperature
conductivity. However, close to T 0, a two-band picture is
needed.
Above 180 K, S, RH, n, and μH are similar in both

samples, suggesting that the thermally activated carriers
dominate at high temperatures. At room temperature, both
samples show weakly metallic resistivity, while thermo-
power is activated, S ¼ Cþ 2Δ=ðeTÞ, giving a band gap of
2Δ ∼ 20 meV at high temperature for both samples (C is a
constant offset). Therefore, the chemical potential is within
the gap at high temperature. Its temperature evolution is
illustrated by the inset in Fig. 1(c); T 0 depends on the low-
temperature carrier density. A small band gap and a steep
band dispersion may lead to a strong shift of chemical
potential, consistent with linear dispersion.
We have identified the maximum in the resistivity with

the minimum in the carrier density. However, resistivity
also depends on the scattering rate. To show that it is the
carrier density, and not the scattering mechanism, which
dominantly drives the resistivity maximum, one can deter-
mine the optical properties. The reflectance plasma edgeωp

is linked to the carrier concentration, ω2
p ∝ n=m, and does

not depend on the scattering rate.
The reflectance and loss function are shown in Fig. 2.

High reflectance at low energies (R → 1 as ω → 0)
is followed by a sharp drop at the plasma edge. The
room-temperature reflectance looks very similar in samples
A and B, with a broad plasma minimum at 45 meV,
confirming that the carriers are thermally activated
at high temperatures. At low temperatures, the plasma
edge in sample A is lower and the phonon-related features
are much more pronounced, consistent with a lower
carrier density and poorer screening. The plasma edge is
lower at 75 K than at 5 K, signifying that there is a loss of
itinerant carriers as temperature increases from 5 to 75 K.
Similarly, in sample B, the plasma edge is the lowest
for T ≃ 150 K.
The nonmonotonic change in carrier density can be

visualized better by plotting the loss function, defined as
−Imð1=ϵ̃Þ, showing the collective modes as peaks. The
itinerant carrier plasmon appears as a strong peak with a
nonmonotonic temperature dependence [Figs. 2(c)–2(d)],
with minima at T 0

A and T 0
B for samples A and B. The loss

function also shows three phonon plasmons, visible as
horizontal lines in Fig. 2(c). Overall, the reflectance and
loss function firmly establish that the carrier density
changes nonmonotonically with temperature in bulk
ZrTe5, in full agreement with the temperature dependence
of the carrier density in Fig. 1(e). Therefore, the peak
in ρðTÞ is intimately linked to the local minimum in nðTÞ.

FIG. 1. (a) Orthorhombic unit cell of ZrTe5. (b) Resistivity and
thermoelectric power, (c) Hall coefficient, (d) carrier density, and
Hall mobility are shown for samples A and B. Blue and red
dashed vertical lines denote temperatures T 0

A and T 0
B, respec-

tively. Inset in (c) illustrates the chemical potential shift with
temperature.
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The same effect is seen in samples with more than an order
of magnitude difference in carrier density.
The optical conductivity is related to the dielectric function

by σðωÞ¼−2πiω½ϵðωÞ−ϵ∞�=Z0¼σ1ðωÞþiσ2ðωÞ, where
Z0 ≈ 377Ω is the impedance of free space. The real part
of optical conductivity, σ1ðωÞ, is shown in Fig. 3(a) for
samples A and B at 5 K, for light polarized along the a axis.
The optical conductivity is dominated by a sharp Pauli
blocking edge; interband transitions are allowed only when

the incident photon energy is higher than the optical gap 2εF,
with the Fermi level εF measured from the band gap middle.
The lower onset of interband absorption in sample A, than in
sample B, is consistent with the lower εF in sample A. The
optical gap is 2εF ¼ 28 meV in sample A, and 74 meV in
sample B. The band gap was determined using magneto-
optical transmissionmeasurements, giving 2Δ ¼ 6 meV.As
discussed below, this band gap is deduced from a small but
well-defined deviation of the interband inter-Landau level
transitions from a

ffiffiffiffi
B

p
dependence, which is, otherwise,

typical of massless (gapless) charge carriers. This points to a
linear dispersion in the a-c plane, in agreementwith previous
work [6,10,24].
A combined analysis of the optical conductivity and Hall

effect data allow us to determine the effective cyclotron
masses in both samples. Spectral weight analysis is
performed by integrating the Drude part of the conductivity
curve up to ω� ¼ 5 meV, such that at 5 K the Drude
contribution falls within the integration limit [17]. The
effective a-c plane masses for samples A and B obtained
from this analysis are shown in Table I. Importantly, the
effective mass of sample A is smaller than for sample B:
mB ≈ 2.5mA. The apparent dependence of the effective
mass on the Fermi energy is clear evidence for a non-
parabolic dispersion. For a linearly dispersing system, the
effective (cyclotron) mass may be defined by εF=v2a, which
is in excellent agreement with m (Table I), and indicates
conical dispersion in the a-c plane.
We now want to verify the nature of the linear dispersion.

For a 3D conical band, one expects the real part of
optical conductivity to grow linearly with the frequency,
σ1ðωÞ ¼ e2νω=ð12hvFÞ, where ν is the number of non-
degenerate cones at the Fermi level [25,26]. Such depend-
ence is, indeed, observed for sample B, with a higher
optical gap. However, this model fatally fails to explain the
optical conductivity of sample A [Fig. 3(a)] with a lower

FIG. 2. Reflectance of (a) sample A and (b) sample B as a
function of photon energy. Loss function color map for (c) sample
A and (d) sample B. The data were taken at each 25 K, and
interpolated.

FIG. 3. (a) σ1ðωÞ is shown at 5 K for Eka, the calculated conductivity (∼ ffiffiffiffi
ω

p
) is detailed in the text. (b) Landau level transition energies

obtained from magneto-optical transmission measurements on sample A, at T ¼ 2 K. Red lines are a fit to Eq. (4); the gap 2Δ ¼ 6 meV
is indicated. The two lowest observed transitions are labeled. Inset shows a relative magnetotransmission spectrum for B ¼ 1 T.
(c) Wide frequency range σ1ðωÞ for the two polarizations in the a-c plane, at T ¼ 5 K; inset shows low-energy details of σ1.
(d) Temperature evolution of σ1ðωÞ for Eka.
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doping, where σ1ðωÞ increases quasilinearly with ω, but
with a well-defined offset.
It has been proposed that such an offset may arise from

self-energy effects, σ1ðωÞ ∝ ω − 4Δ, which may induce a
positive or negative band gap 2Δ [27,28]. Adopting this
scenario, our data would imply 2Δ ∼ −50 meV [Fig. 3(a)].
However, this value exceeds, by an order of magnitude, the
size of the gap directly measured by magnetotransmission
experiments [Fig. 3(b)]. Moreover, the gap readout from
the magneto-optical data—if, indeed, due to self-energy
effects—would have to be positive.
To explain the linear but clearly offset optical conduc-

tivity, we propose a simple effective Hamiltonian. It differs
from the 3D massive Dirac electron model, often used for
ZrTe5, but still implies a massive Dirac dispersion in the
a-c plane, with a parabolic dispersion around the band gap
2Δ that straightens to a linear dispersion at higher energies.
The dispersion along the b direction remains parabolic or
Schrödinger-like at all relevant energies

H ¼
� Δþ ζk2b ℏvaka − iℏvckc
ℏvaka þ iℏvckc −Δ − ζk2b

�
: ð1Þ

vα are theDirac velocities, and ζ ¼ ℏ2=2m�wherem� is theb
direction effective mass. The eigenvalues of the Hamiltonian

are ε2;1k ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2ðvakaÞ2 þ ℏ2ðvckcÞ2 þ ðΔþ ζk2bÞ2

q
, and

they are symmetricalwith respect to the bandgapmiddle. The
interband conductivity along thea axis can be evaluated in the
vanishing relaxation constant approximation for T ≈ 0 [17]

σa1ðωÞ ¼
e2

4πℏ2

va
vc

ffiffiffiffiffiffi
m�p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏω − 2Δ
p

Θðℏω − 2εFÞ: ð2Þ

The ratio va=vc ≈ 1.5 is determined from the ratio of
interband conductivities along the a and c axes [Fig. 3(c)],
leaving m� as the only fitting parameter. The fit shown in
Fig. 3(a) gives m� ≈ 1.8me and matches the experimental
optical conductivity very well, confirming that the dispersion
in ZrTe5 is linear in the a-c plane and parabolic along the b
direction. Based on the aboveHamiltonian, we can determine
the total carrier concentration [17]

n ¼ 2

15

1

π2ℏ3

1

vavc

ffiffiffiffiffiffiffiffiffi
2m�p

ðεF − ΔÞ3=2ð2Δþ 3εFÞ: ð3Þ

Using the value from the Hall effect, n ¼ 3 × 1016 cm−3 for
sample A, we obtain va¼7.0×105m=s and vc¼
4.6×105m=s in very good agreement with the Shubnikov
de Haas experiments [7]. The bare plasmon energy is
ℏωpl ¼ ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2naa=ðϵ0meÞ

p
¼ 0.12 eV, in good agreement

with the experimental fit for sample A, 0.1 eV [17]. The
energydispersionmay be expanded for small values ofka, kb,
and kc, since the conduction band is weakly filled. The
expansion gives a closed Fermi surface of ellipsoidal
shape whose effective masses in various directions are
ma ¼ Δ=v2a ¼ 0.001me, mc ¼ Δ=v2c ¼ 0.0025me, and
mb ¼ m� ¼ 1.8me. The Landau levels for the Hamiltonian
(1) for a magnetic field applied along the b axis are [17]

ε̃ðBÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏevavcBN þ Δ2

q
: ð4Þ

The fit in Fig. 3(b) gives a band gap of 2Δ ¼ 6 meV, and the
effective Fermi velocity

ffiffiffiffiffiffiffiffiffi
vavc

p ¼ 4.9 × 105 m=s.
The presence of a bandgap inZrTe5 agreeswith the density

functional theory (DFT) [1,9,12,17]. The DFT favors STI
over WTI as a ground state of ZrTe5, both in monolayer and
bulk form. Nevertheless, the DFT theory appears to over-
estimate its size (25–100meV). Experimentally, the situation
is less clear. Both STI andWTI phases have been reported by
ARPES or scanning tunneling spectroscopy [4,8,9,29,30].
While we do not find direct evidence of either STI or WTI in
our experimental data, such a conclusionwasmade in a recent
magneto-optical study [10], reporting on crossing of zero-
mode Landau levels, typical of STIs. The DFT studies also
indicate [1,12] that theout-of-planedispersion is considerably
flatter as compared to the in-plane one. This is in linewith our
findings and the layered nature of ZrTe5. At higher energies,
our optical spectra agree with those determined by DFT
calculation [17].
Figure 3(d) shows σ1ðωÞ for sample B, taken at many

different temperatures. As the temperature increases from 5
to 150 K, the Pauli edge gradually smears out and shifts to
lower energies, consistent with the decrease of carrier
density. Interestingly, σ1 appears to be linear in ω at
T ¼ 150 K. Above 150 K, the low frequency range is
filled out by a Drude contribution of the thermally excited
carriers which become accessible for T > 2Δ=kB.
The scattering rate γ for the Drude contribution can be

obtained from a Drude-Lorentz modeling of the reflectance
[15]. At 5K, for sample A, one obtains γ ¼ 1� 1 meV.
The scattering rate can also be extracted from σdc ¼
e2naaℏ=ðmeγÞ, where naa is obtained from our model
calculation [17]. Here, naa is the spectral weight of the
Drude contribution and is finite regardless of temperature.
This gives γ ¼ 0.5 meV for sample A, within the error bars
of the optically determined scattering rate.
The Hamiltonian (1) may also quantitatively explain the

observed T2 behavior in the resistivity. The T2 resistivity
dependence in a 3D metal is usually caused by three

TABLE I. Hall mobility, Hall carrier density, effective (cyclo-
tron) mass, optical gap 2εF, and εF=v2a at 5 K. Velocity along a
axis is va ¼ 6.9 × 105 m=s.

Sample μH [cm2=ðVsÞ] n (cm−3) m 2εF (meV) εF=v2a

A 4.5 × 105 3 × 1016 0.0052 28 0.0052
B 1.0 × 105 7 × 1017 0.0125 74 0.0137
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mechanisms: Umklapp scattering, Koshino-Taylor impu-
rity scattering [31,32], and thermal activation of carriers.
The latter is linked to the temperature dependence of the
chemical potential, which is significant in ZrTe5. The
electron band properties allow us to calculate the expected
coefficient for the sample A, giving two thirds of the fit to
the experimental data, Acalc

A ≃ 2=3AA [17]. All of this points
to a fairly good agreement between the model, the optical
results, and the transport results.
Finally, Fig. 3(c) shows the optical conductivity in a

broad frequency range for both in-plane polarizations, at
T ¼ 5 K. Several strong features are apparent, and the
strongest is at 0.5 eV, which is only ∼50 meV wide for
Eka. This feature is a van Hove singularity, due to
transitions between flat bands, and it indicates a weaker
dispersion along the b axis, fully consistent with our
Hamiltonian.
In conclusion, ZrTe5 is a fairly simple two-band system

of extremes. It has a small band gap, very small effective
mass, and may reach extremely low carrier concentration,
yet showing metallic conductivity with very high mobility.
These specific physical characteristics lead to a chemical
potential that strongly shifts as a function of temperature.
Crucially, the optical conductivity clearly contradicts the
scenario of a 3D cone. Based on the characteristic fre-
quency dependence of σ1ðωÞ, we conclude that, while the
dispersion is linear in the a-c plane well above the band
gap, it remains parabolic along the b axis.
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[16] X. Lin, B. Fauqué, and K. Behnia, Science 349, 945 (2015).
[17] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.122.217402 for addi-
tional data and theory to support our work, which includes
Refs. [18–22].

[18] D. J. Singh, Planewaves, Pseudopotentials and the LAPW
Method (Kluwer Adademic, Boston, 1994).

[19] D. Singh, Phys. Rev. B 43, 6388 (1991).
[20] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and

J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local
Orbitals Program for Calculating Crystal Properties
(Technical Universität Wien, Austria, 2001).

[21] S. Furuseth, L. Brattås, and A. Kjekshus, Acta Chem.
Scand. 27, 2367 (1973).

[22] C. Ambrosch-Draxl and J. O. Sofo, Comput. Phys. Com-
mun. 175, 1 (2006).

[23] G. Eguchi and S. Paschen, Phys. Rev. B 99, 165128 (2019).
[24] Y. Jiang, Z. L. Dun, H. D. Zhou, Z. Lu, K.W. Chen, S.

Moon, T. Besara, T. M. Siegrist, R. E. Baumbach, D.
Smirnov, and Z. Jiang, Phys. Rev. B 96, 041101(R) (2017).

[25] P. Hosur, S. A. Parameswaran, and A. Vishwanath, Phys.
Rev. Lett. 108, 046602 (2012).

[26] A. Bácsi and A. Virosztek, Phys. Rev. B 87, 125425 (2013).
[27] C. J. Tabert, J. P. Carbotte, and E. J. Nicol, Phys. Rev. B 93,

085426 (2016).

PHYSICAL REVIEW LETTERS 122, 217402 (2019)

217402-5

https://doi.org/10.1103/PhysRevX.4.011002
https://doi.org/10.1103/PhysRevX.4.011002
https://doi.org/10.1038/nphys3648
https://doi.org/10.1103/PhysRevLett.115.207402
https://doi.org/10.1103/PhysRevB.95.195119
https://doi.org/10.1103/PhysRevB.95.195119
https://doi.org/10.1103/PhysRevB.92.075107
https://doi.org/10.1103/PhysRevLett.115.176404
https://doi.org/10.1103/PhysRevLett.115.176404
https://doi.org/10.1038/ncomms12516
https://doi.org/10.1103/PhysRevB.94.081101
https://doi.org/10.1103/PhysRevLett.117.237601
https://doi.org/10.1073/pnas.1613110114
https://doi.org/10.1103/PhysRevLett.121.187401
https://doi.org/10.1103/PhysRevLett.121.187401
https://doi.org/10.1038/srep45667
https://doi.org/10.1038/srep45667
https://doi.org/10.1016/0022-0248(83)90279-8
https://doi.org/10.1364/AO.32.002976
https://doi.org/10.1063/1.1979470
https://doi.org/10.1126/science.aaa8655
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.217402
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.217402
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.217402
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.217402
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.217402
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.217402
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.217402
https://doi.org/10.1103/PhysRevB.43.6388
https://doi.org/10.3891/acta.chem.scand.27-2367
https://doi.org/10.3891/acta.chem.scand.27-2367
https://doi.org/10.1016/j.cpc.2006.03.005
https://doi.org/10.1016/j.cpc.2006.03.005
https://doi.org/10.1103/PhysRevB.99.165128
https://doi.org/10.1103/PhysRevB.96.041101
https://doi.org/10.1103/PhysRevLett.108.046602
https://doi.org/10.1103/PhysRevLett.108.046602
https://doi.org/10.1103/PhysRevB.87.125425
https://doi.org/10.1103/PhysRevB.93.085426
https://doi.org/10.1103/PhysRevB.93.085426


[28] D. Neubauer, J. P. Carbotte, A. A. Nateprov, A. Löhle, M.
Dressel, andA. V. Pronin, Phys. Rev. B 93, 121202(R) (2016).

[29] X.-B. Li, W.-K. Huang, Y.-Y. Lv, K.-W. Zhang, C.-L. Yang,
B.-B. Zhang, Y. B. Chen, S.-H. Yao, J. Zhou, M.-H. Lu, L.
Sheng, S.-C. Li, J.-F. Jia, Q.-K. Xue, Y.-F. Chen, and D.-Y.
Xing, Phys. Rev. Lett. 116, 176803 (2016).

[30] R. Wu, J. Z. Ma, S. M. Nie, L. X. Zhao, X. Huang, J. X. Yin,
B. B. Fu, P. Richard, G. F. Chen, Z. Fang, X. Dai,

H. M. Weng, T. Qian, H. Ding, and S. H. Pan, Phys. Rev.
X 6, 021017 (2016).

[31] S. Koshino, Prog. Theor. Phys. 24, 484 (1960).
[32] P. L. Taylor, Phys. Rev. 135, A1333 (1964).

Correction: The omission of a statement of thanks in the
Acknowledgment section has been remedied.

PHYSICAL REVIEW LETTERS 122, 217402 (2019)

217402-6

https://doi.org/10.1103/PhysRevB.93.121202
https://doi.org/10.1103/PhysRevLett.116.176803
https://doi.org/10.1103/PhysRevX.6.021017
https://doi.org/10.1103/PhysRevX.6.021017
https://doi.org/10.1143/PTP.24.484
https://doi.org/10.1103/PhysRev.135.A1333

