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The recent discovery of magnetism in two-dimensional van der Waals systems opens the door to
discovering exciting physics. We investigate how a current can control the ferromagnetic properties of
such materials. Using symmetry arguments, we identify a recently realized system in which the current-
induced spin torque is particularly simple and powerful. In Fe3GeTe2, a single parameter determines the
strength of the spin-orbit torque for a uniform magnetization. The spin-orbit torque acts as an effective
out-of-equilibrium free energy. The contribution of the spin-orbit torque to the effective free energy
introduces new in-plane magnetic anisotropies to the system. Therefore, we can tune the system from an
easy-axis ferromagnet via an easy-plane ferromagnet to another easy-axis ferromagnet with increasing
current density. This finding enables unprecedented control and provides the possibility to study the
Berezinskiı̌-Kosterlitz-Thouless phase transition in the 2D XY model and its associated critical
exponents.
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Introduction.—Magnetism in lower dimensions hosts
interesting physics that has been studied theoretically for
many decades. Examples include the intriguing physics of
the exactly solvable 2D Ising model [1] and the
Berezinskiı̌-Kosterlitz-Thouless (BKT) phase transition in
the 2D XY model [2–4]. However, experimentally realizing
the details of these theoretical predictions has proven
difficult. One reason for this difficulty is that fabricating
atomically thin films is challenging. The isolation of
graphene in 2004 provided a path for exploring two-
dimensional van der Waals materials [5]. Creating two-
dimensional films that have long-range magnetic order at
finite temperatures is more challenging because of the
Mermin-Wagner theorem [6]. This theorem states that long-
range magnetic order does not exist at finite temperatures
below three dimensions when the exchange interaction has
a finite range and the material has a continuous symmetry
in spin space. Consequently, realizing two-dimensional
magnetic materials requires breaking the continuous sym-
metry of the system, e.g., by a uniaxial magnetocrystalline
anisotropy. This provides an energy cost (also known as a
magnon gap) to suppress long-range fluctuations that can
destroy the magnetic order. The recent discovery of
magnetic order in two-dimensional van der Waals materials
has therefore led to a large number of studies of magnetism
in atomically thin films [7]. Magnetic order has been
reported in FePS3 [8], Cr2GeTe6 [9], CrI3 [10], VSe2
[11], MSex [12], and Fe3GeTe2 [13,14]. In addition,
multiferroicity has been identified in CuCrP2S6 [15].
These new two-dimensional magnets are amenable to
electrical control [14,16–18] and produce record-high
tunnel magnetoresistances [19].

Currents can induce torques in magnetic materials [20].
In ferromagnets with broken inversion symmetry, the spin-
orbit interaction leads to spin-orbit torques (SOTs) [21].
These torques can be present even in the bulk of the
materials without requiring additional spin-polarizing ele-
ments. The effects of SOTs are typically sufficiently large
to induce magnetization switching or motion of magnetic
textures [22]. With the rich physics that is known to exist in
two-dimensional magnetic systems, we explore how cur-
rents can provide additional control over the magnetic state
via SOTs.
Although many of the newly discovered two-

dimensional magnetic systems exhibit SOTs, we find that
in one material the torque is particularly simple and power-
ful. The form of the torque is simple because it is determined
by a single parameter. The torque is also influential in
determining the magnetic state of the system. In contrast to
many other systems, we can describe the current-induced
effects via an effective out-of-equilibrium free energy.
Therefore, the SOT enables unprecedented control over
the magnetic state via the current. We will demonstrate how
the current can drive the system from having easy-axis
anisotropy along one direction to anisotropy along a differ-
ent axis by proceeding via an intermediate state with easy-
plane anisotropy.
Interestingly, the current-induced easy-plane configura-

tion provides the possibility to study the BKT phase
transition in this system. The BKT transition is an example
of a so-called conformal phase transition in which the scale
invariance of a topologically ordered state, i.e., conformal
invariance, is lost at the (topological) phase transition [23].
When driven by a current, we realize a 2D conformal field
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theory in the low-temperature phase, with conformality
being lost [23] at the transition to the paramagnetic phase.
Additionally, it was recently discovered that an ionic gate
considerably increases the critical temperature [14].
Consequently, two-dimensional Fe3GeTe2 forms an ideal
and very rich laboratory for studying fundamental prob-
lems of broad current interest in condensed matter physics
and beyond at elevated temperatures.
System.—We consider a monolayer of Fe3GeTe2.

Figure 1 shows the crystal structure of this material.
Fe3GeTe2 crystallizes in the hexagonal system, space group
194, point group 6=m 2=m 2=m, known as D6h in the
Schönflies notation [24]. However, the basis reduces the
point group symmetry to 6̄m2 (D3h). Placing a Fe3GeTe2
monolayer on a substrate may reduce the symmetry even
further (point group 3m) if the bottom tellurium layer
hybridizes with the surface. Here, we assume that a
possible monolayer-substrate interaction is weak. In the
case of a strong monolayer-substrate interaction, we can
preserve the out-of-plane mirror symmetry by suspending
the monolayer between two electrodes [25] or encapsulat-
ing it in another van der Waals material, such as hexagonal
boron nitride.
The SOT can be written as [26]

τ ¼ −jγjm ×HSOT; ð1Þ

where γ is the gyromagnetic ratio and m is the magneti-
zation unit vector. For a spatially uniform magnetization,
the effective magnetic field HSOT due to the SOT in a
Fe3GeTe2 monolayer is [27]

HSOT ¼ Γ0½ðmxJx −myJyÞex − ðmyJx þmxJyÞey� ð2Þ

for current densities and magnetizations in any direction.
Here, mi are magnetization components, and Ji are
components of the current density. Γ0 is a free parameter
that is determined by the spin-orbit coupling.
We provide a rigorous derivation of the effective field

HSOT based on Neumann’s principle in the Supplemental
Material [27]. In Fe3GeTe2, we can understand the

dependence of the SOT on the magnetization and currents
in Eq. (2) as follows. The crystal structure in Fig. 1 is
invariant under a threefold rotation about the z axis (3z),
an inversion of the y axis (my), and an inversion of the
z axis (mz). These symmetry operations generate the point
group 6̄m2. Since HSOT only contains terms that are
quadratic in y, it is invariant under the operation my.
The operation 3z transforms ðmx;myÞ into
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and similarly for ðJx; JyÞ and ðex; eyÞ. Backsubstitution of
the transformation in Eq. (3) into Eq. (2) shows thatHSOT is
also invariant under this operation. The effective fieldHSOT
is invariant under mz since neither mz nor ez appear
in Eq. (2).
Micromagnetics.—The magnetization dynamics can be

described by the semiclassical Landau-Lifshitz-Gilbert
equation

_m ¼ −jγjm ×Heff þ α m × _mþ τ: ð4Þ

Here, α > 0 is the dimensionless Gilbert damping param-
eter, Heff ¼ −M−1

s δf½m�=δm is an effective magnetic field
that describes the magnetization directionm that minimizes
the free energy density functional f½m�, and Ms is the
saturation magnetization. Interestingly, we note that a
functional exists that generates the effective SOT field in
Eq. (2), which is given by

fSOT½m� ¼ MsΓ0

�
Jymxmy −

1

2
Jxðm2

x −m2
yÞ
�
: ð5Þ

The out-of-equilibrium current-induced SOT can therefore
be absorbed into an effective field H̃eff that minimizes the
effective free energy density feff ½m� ¼ f½m� þ fSOT½m�.
The 2D ferromagnet Fe3GeTe2 is a uniaxial ferromagnet

with an out-of-plane easy axis [13,14,29]. The contribution
of the dipole-dipole interaction to the spin wave spectrum
can be neglected for a monolayer system [30–34]. If we
consider a spatially uniform magnetization and use a
spherical basis, ðmx;my;mzÞ¼ðsinθcosϕ;sinθsinϕ;cosθÞ,
the effective free energy becomes

feff ½θ;ϕ� ¼ −
Ms

2
½Kz cos2 θ þ Γ0jJj sin2 θ cos ð2ϕþ ϕJÞ�:

ð6Þ

Here,Kz > 0 is the out-of-plane anisotropy constant, and jJj
and ϕJ ¼ arctan ðJy=JxÞ are the magnitude and azimuthal
angle of the applied current, respectively. From this, we find
that the SOT effectively acts as in-plane magnetocrystalline
anisotropies. The anisotropy originating from the SOT
always comes in a pair of perpendicular easy and hard axes.

FIG. 1. Crystal structure of a Fe3GeTe2 monolayer. (Left) View
along ez. (Right) View along ey. a is the in-plane bond length
between FeIII and FeII. 2b is the out-of-plane distance between the
two FeIII sublattices. FeIII and FeII represent the two inequivalent
Fe sites in oxidation states þ3 and þ2, respectively. Redrawn
after Ref. [14].

PHYSICAL REVIEW LETTERS 122, 217203 (2019)

217203-2



Thedirections of the anisotropy axes depend on the direction
of the applied current. For weak currents (jΓ0Jj < Kz), the
magnetization of Fe3GeTe2 remains out of plane (θ ¼ 0; π).
However, for sufficiently strong currents (jΓ0Jj > Kz), an
in-plane configuration of the magnetization becomes
more energetically favorable. Assuming that Γ0 > 0, the
effective free energy is then minimized by θ ¼ π=2 and
ϕ ¼ nπ − ϕJ=2 (n ¼ 0; 1; 2;…). When Γ0 < 0, the easy
and hard axes are interchanged, and the minima are
ϕ ¼ ðnþ 1=2Þπ − ϕJ=2. The easy and hard axes also
interchange upon reversal of the applied current.
Magnon gap.—Because the SOT can effectively be

considered a current-controlled magnetocrystalline
anisotropy, we can electrically control the magnon gap
in Fe3GeTe2. The magnon gap is governed by the energy
difference between the out-of-plane and in-plane magneti-
zation configurations, i.e., jKz − jΓ0Jjj. At the critical
current jJcj ¼ Kz=jΓ0j, the magnon gap vanishes as the
magnetic easy axis transitions from an out-of-plane axis to
an in-plane axis. Exactly at this transition point, we obtain a
magnetic easy plane. Below the critical current, the magnon
gap decreases monotonically with the applied current,
whereas it increases monotonically above the critical
current. The ability to electrically tune the magnon gap
in a 2D magnetic material opens the door for exploring a
wide variety of effects in magnetism in two dimensions.
Curie temperature.—The first effect that is characteristic

of a two-dimensional system that we will now illustrate is
the dependence of the Curie temperature on the magnon
gap. Because the Curie temperature in 2D is primarily
governed by the magnon gap, unlike in 3D [35], we will
study its behavior as we tune the SOT-controlled magnon
gap through the transition from an out-of-plane easy axis to
an in-plane easy axis. To illustrate the basic aspects of
current control of the Curie temperature, we make a few
simplifications to reduce the number of free parameters and
the complexity of the calculations. Fe3GeTe2 is an itinerant
ferromagnet, and its magnetic interactions are therefore
described by the Stoner model [29]. The Stoner model can
in our system be transformed into a Ruderman-Kittel-
Kasuya-Yosida (RKKY) exchange interaction between the
iron atoms [36]. We assume that the exchange interaction in
a Fe3GeTe2 monolayer has a finite range and therefore
obeys the Mermin-Wagner theorem. To simplify the cal-
culations, we replace the Stoner or RKKY exchange
interaction by a simple nearest-neighbor interaction
between the FeII and FeIII atoms (i.e., there is no exchange
interaction within each sublattice or between the two
different FeIII sublattices). This will also obey the
Mermin-Wagner theorem, and this system will conse-
quently also exhibit the same qualitative dependence on
the magnon gap as other finite-range interactions. We
also assume that the magnetic anisotropy constants are
identical at all sites. Consequently, we consider the model
Hamiltonian

H ¼ −
εJ
2ℏ2

X
r

X
δ

Sr · Srþδ −
εz
2ℏ2

X
r

ðSr;zÞ2

−
εx
2ℏ2

X
r

½ðSr;xÞ2 − ðSr;yÞ2�: ð7Þ

Here, εJ > 0 is an energy constant that describes the
nearest-neighbor exchange interactions of spins separated
by δ, εz > 0 is an energy constant that describes the out-of-
plane anisotropy, and εx ∝ Γ0Jx > 0 is an energy constant
that describes the effective in-plane anisotropies caused by
the SOT. Sr;i (i ¼ x, y, z) describes the ith component of the
spin operator located at position r. We split the Fe3GeTe2
monolayer into three distinct sublattices: one for the FeII

atoms, one for the FeIII atoms at z ¼ þb, and one for the
FeIII atoms at z ¼ −b.
We proceed by performing a Holstein-Primakoff trans-

formation of the spin operators around the equilibrium spin
direction. This is in the z direction below the critical current
Jc and along the x direction above the critical current.
Because of the anomalous Hall effect in Fe3GeTe2
[14,37,38], applying the current exactly along the x
direction can be experimentally challenging. However, as
can be deduced from Eq. (6), a scenario in which the
current is applied in a different direction can be achieved by
a rotation of the unit cell or Brillouin zone. Since it is the
magnons closest to the Γ point that dominate the calcu-
lation of the Curie temperature, we expect the results to be
very similar for an off-axis current.
In our calculations, we keep terms to the second order in

the Holstein-Primakoff magnon operators. We expect this
to be a good qualitative approximation, although it will not
be a very good quantitative approximation because the
magnon population diverges at the critical point. However,
keeping terms to, for instance, the fourth order in the
magnon operators to include magnon-magnon interactions
[9] would be complicated because Eq. (7) does not
conserve the magnon number for finite currents.
Following the Holstein-Primakoff transformation, we

perform a Fourier transformation of the magnon operators
to momentum space. We then diagonalize the Hamiltonian
by a Bogoliubov transformation such that it takes the
form [27]

H ¼
X
k;μ

εk;μα
†
k;μαk;μ: ð8Þ

Here, the operator αð†Þk;μ annihilates (creates) an eigenmag-
non with a momentum k and energy εk;μ. There are three
different modes (μ ¼ I; II; III) of the eigenmagnons. We
have imposed the constraint on the Bogoliubov trans-
formation that the new operators have to satisfy bosonic
commutation relations: ½αk;μ; α†k0;μ0 � ¼ δkk0δμμ0 .
From the energy spectrum of the eigenmagnons in

Fe3GeTe2, we can estimate the Curie temperature Tc. To
determine Tc, we use the fact that the magnetization along
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the equilibrium direction of the spins vanishes at this
temperature. Because we consider a monolayer system,
we only have magnons with in-plane momenta. Balancing
the magnetic moments, we find the constraint

X
ν

sν −
X
μ

1

ABZ

Z
ABZ

d2k
Sk;μ=ℏ

exp ðεk;μ=kBTcÞ − 1
¼ 0: ð9Þ

Here, sν is the dimensionless spin number of the magnetic
moments in sublattice ν (where ν ¼ 2 for the FeII atoms,
and ν ¼ 3� for the FeIII atoms located at z ¼ �b), and
ABZ ¼ ffiffiffi

3
p

π2=ð2a2Þ is the (reciprocal) area of the first
Brillouin zone. Sk;μ is the spin of the eigenmagnons, which
is not an integer for finite SOT because of magnon
squeezing [39]. The spin of the eigenmagnons depends
on the parameters of the Bogoliubov transformation and is
given in the Supplemental Material [27].
We can now calculate the Curie temperature numerically

based on Eq. (9). In our calculations, we set the out-of-
plane anisotropy constant to be εz ¼ 0.335 meV [29]. The
value of the nearest-neighbor exchange coupling is set to be
εJ ¼ 0.705 meV to reproduce the experimental Tc of a
monolayer of ∼130 K [13] (note, however, that a different
experiment determined the Tc of a monolayer to be ∼68 K
[14]). The real value of εJ is in all likelihood larger [14]
because the linear response method typically overestimates
Tc. The dimensionless spin numbers sν for the spins in
sublattice ν are s2 ¼ 2 and s3− , s3þ ¼ 5=2 [40]. We plot the
Curie temperature as a function of the applied current
in Fig. 2.
Because we only kept terms to the second order in the

magnon operators, we do not expect that our calculation of
Tc will be quantitatively correct. However, the qualitative
features of our result appear to be physically reasonable.
When we apply a SOT below the critical current jJcj, we

effectively reduce the magnon gap by creating a pair of easy
and hard axes perpendicular to the out-of-plane magneti-
zation. Because the Curie temperature in 2D materials is
governed by the magnon gap, this also reduces Tc. At the
critical current strength, we obtain a continuous symmetry
in the form of an easy plane when the in-plane easy axis
induced by the SOT becomes equal to the out-of-plane
magnetocrystalline anisotropy. Because of the Mermin-
Wagner theorem, there can be no long-range magnetic
order at finite temperatures in this scenario, and Tc drops to
zero. Above the critical current, we now increase the
magnon gap for an in-plane magnetization configuration,
and Tc increases accordingly. Tc will then saturate at the
Curie temperature of the Ising model for large currents,
which our model does not capture [41].
In addition to the current affecting the Curie temperature

through a SOT, the current will also increase the temper-
ature in the material due to joule heating, which needs to be
taken into account when measuring the Curie temperature
of the material. The joule heating increases quadratically
with the applied current. Conversely, the SOT is linear in
the applied current, but its effect on the Curie temperature
depends on whether we are above or below the critical
current. Consequently, if the critical current is sufficiently
small, then the effect of the SOT will dominate that of the
joule heating. In this case, the magnetic ordering exhibits
reentrant behavior as a function of the applied current.
Notably, above the critical current, when the magnetization
is in the plane, the easy and hard axes are interchanged
upon reversal of the current direction. A reversal of the
applied current would therefore lead to a 90° rotation of the
magnetization.
2D XY model.—Although the spontaneous magnetiza-

tion vanishes for finite temperatures at the critical current
density jJcj, this regime remains an interesting region for
studying the magnetic properties. At the critical current
density (jεxj ¼ εz), the model in Eq. (7) becomes, quite
remarkably, a 2D easy-plane ferromagnet, where the easy
plane is perpendicular to the plane of the monolayer.
Therefore, at this current density, the model features a
critical phenomenon in the universality class of the 2D XY
model. Consequently, the system has a topological phase
transition rather than the more conventional phase tran-
sition of the 2D Ising model [1]. The 2D Ising universality
class falls within the framework of the Landau-Ginzburg-
Wilson paradigm of phase transitions of an order-disorder
transition monitored by a local order parameter [42,43].
The spin-spin correlation length diverges from above
and below Tc as ξ ∼ jT − Tcj−ν, where ν is a universal
critical exponent. There is true long-range order in the
low-temperature phase, short-range order in the high-
temperature phase, and power-law spin-spin correlations
precisely at the critical point. In contrast, the 2D XY model
features a genuine phase transition with no local order
parameter. At this phase transition, the spin-spin correlation

FIG. 2. Numerical calculation of Tc for a spontaneous mag-
netization based on a simple linear response model of the magnon
spectrum. The result is identical for any direction of the applied
current J. Below jJcj, the magnetization is along the z axis,
whereas above jJcj, the magnetization is along an in-plane axis
determined by the direction of the applied current.
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length diverges as ξ ∼ expðconst= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T − TBKT

p Þ from the
high-temperature side only [4], where TBKT is the critical
temperature of the BKT transition. The high-temperature
phase has short-range order, and the entire low-temperature
phase is critical with a spin-spin correlation function
featuring a nonuniversal temperature-dependent anomalous
dimension η, hSr · Sr0 i ∼ 1=jr − r0jη [4].
In 2D Fe3GeTe2, we may realize this type of highly

nontrivial behavior by tuning the electric current to the
critical value and then drive the system through the phase
transition by varying the temperature. Moreover, below the
BKT transition, the temperature dependence of the non-
universal anomalous dimension η of the 2D XY model can
be mapped by varying the temperature and measuring the
spin-spin correlation function by polarized small-angle
neutron scattering, which is particularly well suited for
ultrathin films [44]. The present system is also amenable to
studying the universal anomalous dimension of the 2D
Ising model at T ¼ Tc, η ¼ 1=4 [45]. The prediction for the
2D XY model, η ¼ kBT=4πJ [4], where J is the effective
exchange coupling and kB is Boltzmann’s constant, has not
been tested in real 2D magnetic systems to our knowledge.
Examples of real physical systems with this level of

control over such phenomena are very rare, particularly for
systems where the phenomena are accessible at relatively
elevated temperatures. The most well-known example is
superfluidity in thin films of 4He, where the BKT transition
occurs below 1.2 K [46]. In that context, the remarkable
prediction and experimental verification of a universal
jump in the superfluid density of the system [46,47] is
also worth noting. We expect the corresponding physics of
a universal jump in the spin stiffness of the system to occur
at liquid nitrogen or oxygen temperatures in the system
studied here. The spin stiffness may be measured in spin
wave resonance experiments [48]. Furthermore, and in
contrast to our present case, η is not experimentally
accessible in superfluid thin films of 4He.
The parameter Γ0 determines the magnitude of the

critical current and thus the accessibility of the effects that
we discuss. This value cannot be obtained purely from
symmetry considerations but rather needs to be determined
experimentally or by ab initio calculations. In light of the
exciting physics that can be realized and the flexibility of
the system, determining its value would be very interesting.
Based on the strong magnetic anisotropy of the material,
we believe that the spin-orbit coupling is sufficiently
strong. Paired with the observation that SOTs are typically
sufficiently large to induce magnetization switching in
other materials [22], we have reason to believe that
reentrant magnetism and topological phase transitions
can be experimentally observed in Fe3GeTe2.
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