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We propose a topological characterization of Hamiltonians describing classical waves. Applying it to the
magnetostatic surface spin waves that are important in spintronics applications, we settle the speculation
over their topological origin. For a class of classical systems that includes spin waves driven by dipole-
dipole interactions, we show that the topology is characterized by vortex lines in the Brillouin zone in such
a way that the symplectic structure of Hamiltonian mechanics plays an essential role. We define winding
numbers around these vortex lines and identify them to be the bulk topological invariants for a class of
semimetals. Exploiting the bulk-edge correspondence appropriately reformulated for these classical waves,
we predict that surface modes appear but not in a gap of the bulk frequency spectrum. This feature,
consistent with the magnetostatic surface spin waves, indicates a broader realm of topological phases of
matter beyond spectrally gapped ones.
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The principle of bulk-edge correspondence is a corner-
stone in the field of topological phases of matter [1]: at
the boundary of a system whose bulk frequency spectrum
is topologically nontrivial, there should appear localized
edge modes with eigenfrequencies in a gap of the bulk
spectrum. This principle underlies the unconventional
stability of chiral edge states in quantum Hall insulators
[2] and Dirac surface states of topological insulators [3],
and has more recently led to predictions of edge modes in
various classical systems [4–6]. The bulk system topology
is usually characterized by a topological invariant defined
for Hamiltonians describing spatially unbounded systems
with specified symmetry operations. It dictates the exist-
ence and number of topologically protected edge modes.
The corresponding hallmark of these edge states is their
robustness against symmetry-preserving perturbations.
The insensitiveness of edge states to material parameters

strikes a chord in the field of magnetism. Since their
discovery in 1960 [7], ferromagnetic spin waves known as
“magnetostatic surfacewaves” (MSSWs) havebeen a subject
of various experimental and theoretical studies. These edge
modes owe their intrinsic chiral structure to dipole-dipole
interactions.MSSWs propagate perpendicular to the ordered
magnetization regardless of the sample geometry, be it a slab
[8] or a sphere [9]. They are known to be anomalously robust
against back scatterings [10,11], hinting toward a topological

origin. The chirality and robustness render them interesting
for many fundamental studies, e.g., for nonreciprocal trans-
port of spin [12] and heat [13]. Today, in the context of
magnon spintronics [14], MSSWs are almost exclusively
used in studies of spin-wave transport in microstructures
since they offer the largest decay length of all available
modes and are easily excited by the commonly used
inductive microwave antennas. It is therefore of fundamental
interest whether MSSWs are indeed topologically protected
or not.
In this Letter, we show that the bulk Hamiltonian of spin

waves in the presence of dipole-dipole interactions is
characterized by a topological invariant. A pair of vortex
lines in the Brillouin zone acts as extended Dirac monopoles,
which cannot be removed by small continuous changes in
system parameters. We demonstrate that these topological
vortex lines lead to MSSWs via the notion of class CI
semimetals, where CI denotes the symmetry class formally
defined by the presence of two symmetry operators Γ and T
[15]. Even though they are conventionally called chiral and
even time-reversal symmetry, respectively, these mathemati-
cal operations are realized for MSSWs as the symplectic
structure [16] and the reality condition that are both inherent
to classical mechanics. We first show that in a quantum
mechanical context, class CI semimetals have edge states
which appear in a band gap. The dipolar Hamiltonian has a
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topologically nontrivial class CI semimetal structure.
Because it describes classical waves, however, the topologi-
cal edge states have instead eigenfrequencies above the bulk
spectrum, in agreement with MSSWs. Motivated by this
example, we establish a new type of bulk-edge correspon-
dence for a general class of classical mechanical systems
[Fig. 1(a)].
It is instructive to first visualize the setup [Fig. 1(b)]. The

three-dimensional (3D) Brillouin zone in class CI can be
sliced up into 1D subsystems [green straight lines in
Fig. 1(b)], which generically possess only Γ symmetry
and thus belong to class AIII. As in the Su-Schrieffer-
Heeger model [17], the bulk topological invariant of class
AIII in 1D is the integer winding number over the 1D
Brillouin zone. Its nonzero value guarantees topologically
protected dangling edge modes [18,19] even in the pres-
ence of disorder [20,21]. For dipolar spin waves, each
subsystem gives winding number �1 which remains
constant as the slice is varied, unless a vortex line is
crossed, forcing a discontinuous jump by 2. This topo-
logical structure is analogous to Weyl semimetals, where
the slice-wise 2D Chern number stays constant away from
band-crossings (Weyl points) in the 3D Brillouin zone, but
changes discontinuously when a Weyl point is traversed
[22]. While Weyl semimetals are characterized by the Dirac
monopole charges of the Weyl points (along with the Dirac
strings connecting them [23,24]), the dipolar spin wave
Hamiltonian features vortex lines of 1D “extended mono-
poles” in 3D, i.e., topological defects of codimension two.
We elaborate on this structure by elementary winding

number analysis augmented with T symmetry, following
ideas in Refs. [23,25]. We assume that the system is

periodic on a 3D lattice Z3 and denote the Brillouin zone
by T 3. By definition of a class CI Hamiltonian H [15],
given are a unitary Γ and an antiunitary T such that
fH;Γg ¼ ½H; T � ¼ fΓ; T g ¼ 0, Γ2 ¼ T 2 ¼ 1 where ½·; ·�
(f·; ·g) denotes (anti-)commutator. In the Brillouin zone,
Γ symmetry means

Hk ¼
�

0 Uk

U†
k 0

�
; k ¼ ðkx; ky; kzÞ ∈ T3; ð1Þ

on a basis in which Γ ¼ 1 ⊗ σ3 (σ1;2;3 denote Pauli
matrices), while time-reversal symmetry T relates the
Hamiltonian at k and −k by U−k ¼ Ut

k. Suppose Hk is
gapped; i.e., its eigenvalues are all nonzero, on T3nL where
L ¼ fk ∈ T 3jkx ¼ 0; π; ky ¼ 0; πg is a set of four vortex
lines parallel to kz. More general line defects are obtained
by either deforming or splitting the four straight lines
passing through the time-reversal invariant momenta
(TRIMs) on kz ¼ 0 plane [26]. Here, we focus on the
straight line configuration realized by MSSWs for read-
ability. The gap condition means detUk ≠ 0 on T3nL. Let
us first examine the slice T2 ¼ fk ∈ T 3jkz ¼ 0g, which the
vortex lines intersect at its four TRIMs. Take a small but
otherwise arbitrary loop la encircling only the ath TRIM
[labeling in Fig. 2(a)], oriented counterclockwise. Define
its winding number by

wa ¼
1

2πi

I
la

dflnðdetUkÞg; a ¼ 0; 1; 2; 3: ð2Þ

The winding number is an integer topological invariant,
insensitive to perturbations of U (thus of H that respects Γ
and the gap condition), and deformations of la (avoiding
the vortices). As graphically proven in Fig. 2(a), there is a
“charge cancellation” consistency condition

P
3
a¼0 wa ¼ 0

(a)

(b)

FIG. 1. (a) The class of systems presented in the Letter. The
symmetry class is CI with Γ and T , but we further focus on a
subclass, denoted CI*, in which ω plays the role of Γ. (b) The real
space setup (left) and the corresponding Fourier space (right)
structure for MSSWs. The green straight lines along ky axis
belong to class AIII with well-defined winding numbers.

FIG. 2. (a) Graphical proof of the charge cancellation. Because
of 2π periodicity in kx, ky, the solid, dashed, and dotted loops are
continuously deformable to each other without crossing TRIMs.
The dotted loops are contractible to two points, hence trivial with
zero winding. (b) Determination of the winding of large loops by
a deformation of small loops. Because of T symmetry, large
loops kx ¼ k0 and kx ¼ −k0 have the same windings w ¼ wT .
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because the sum may be evaluated in a second way which is
manifestly trivial.
By T symmetry, the wa are enough to determine the

winding numbers along “large” loops of T 2 [say, at constant
kx or ky, Fig. 2(b)]. First, any small loop la can be deformed
into a symmetric one which is mapped onto itself under
T ∶k → −k. In Eq. (2), the integrand for one half of la is
repeated on the other half, so that the total line integral
should be an even integer. Similarly, a large winding around
ky at a fixed kx ¼ k0 ≠ 0, π must equal that at kx ¼ −k0
evaluated along the opposite orientation, and they are
constrained by their sum equaling that of the enclosed small
windings. As for the 2D slices with kz ≠ 0, π which do not
respect T individually, continuity along kz forces on them
the same topological structure as the kz ¼ 0 slice [Fig. 1(b)].
To summarize, Hamiltonians in class CIwith 1D line defects
L are topologically characterized by three independent small
even windings ðw0; w1; w2Þ ∈ ð2ZÞ3. If wa ≠ 0, there is a
corresponding vortex line of topologically protected gapless
points or singularities of Hk.
To obtain the CI semimetal bulk-edge correspondence,

consider for some fixed kx, kz ≠ 0, π, the two class AIII 1D
subsystems T ðkx;kzÞ and T ð−kx;−kzÞ along the y direction.
Their (large) winding numbers are equal and opposite by T
symmetry, and if nonzero, the 1D bulk-edge correspon-
dence of class AIII ensures that when a surface is cut along
x-z plane, there appear surface-localized eigenstates of H
with zero eigenvalue. A similar argument holds with x
replaced by y. If at least one wa is nonzero, then some T kx;kz
or Tky;kz has nonzero winding number, implying the
existence of edge eigenstates.
The application of the CI semimetal setup presented

above requires a Hamiltonian operator acting on a complex
Hilbert space. To introduce such a structure for classical
mechanical systems on a lattice Z3, a metric plays a crucial
role; below we explain why [26]. In classical mechanics
[16], one starts from a real symplectic vector space V whose
coordinates are canonical variables v ¼ ðfpng; fqngÞt ∈ V,
n ∈ Z3. The symplectic two-form ω ¼ P

n dpn ∧ dqn can
be regarded as a linearmap identifyingV with the dual space
V�. In linearized problems, the dynamics is determined by a
positive definite quadratic energy function EðvÞ, i.e.,
another linearmapV → V�. Hamilton’s equations ofmotion
read dv=dt ¼ I∘EðvÞ, where I ¼ ω−1∶V� → V is the
Poisson bracket and ∘ denotes composition of maps. Note
that E is not an operator (a map V → V). One way of
promoting the energyE∶V → V� to an operator is to assume
that a preferred metric g∶V → V� is given on V and define
H ¼ g−1∘E∶V → V. Indeed, H defined in this way is what
one calls Hamiltonian in problems where V comes with a
natural Euclidean metric. Now the equations of motion may
be rewritten as dv=dt ¼ JHv where J ¼ I∘g∶V → V sat-
isfies Jt ¼ −J (transpose with respect to g). By rescaling
g0 ¼ g∘ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ðI∘gÞ−2p
, we can further arrange for J2 ¼ −1.

For a given classical system with a (rescaled) metric as
above, i.e., maps ω, E, g∶V → V�, we shall sayH ¼ g−1∘E
belongs to class CI* if there exists a positive h0 ∈ Rþ such
that fH − h0; Jg ¼ 0 with J ¼ ω−1∘g. To recognize the
connection to the definition of class CI, we complexify V to
VC ¼ V ⊕ iV and extend g, H, J complex linearly to VC.
This step is usually implicit when one carries out Fourier
transforms. Here, H always has the even “time-reversal”
symmetry T of complex conjugation, reflecting the reality
of the original problem. One can also introduce a chiral
symmetry Γ ¼ iJ, which is unitary and satisfies
fH − h0;Γg ¼ fT ;Γg ¼ 0, Γ2 ¼ 1. Therefore, a classical
H in class CI* has the complexified H − h0 in class CI. If
H − h0 is semimetallic with vortex lines L, the winding
numbers ðw0; w1; w2Þ topologically characterize H. On a
basis where Γ ¼ 1 ⊗ σ2, the classical Hamiltonian takes its
canonical form

H ¼ h0 þ S ⊗ σ1 þ C ⊗ σ3; ð3Þ

with some real operators S, C. A basis transform by Q ¼
f1þ iðσ1 þ σ2 þ σ3Þg=2 brings Γ into Q†ΓQ ¼ 1 ⊗ σ3
andH − h0 into the off-diagonal form as in Eq. (1) with the
Fourier transform of U ¼ C − iS providing the winding
numbers, Eq. (2). If some wa ≠ 0, the CI semimetal bulk-
edge correspondence predicts edge states in the gap of H
at h0, i.e., Hvn0 ¼ h0vn0 .
We now reveal that the edge states vn0 appear above

the physical bulk frequency spectrum. Although the eigen-
values of H do not equal physical eigenfrequencies in
general, there is a one-to-one correspondence between
them within class CI*. Suppose 0 ≠ vnþ ∈ V is an eigen-
vector of H with eigenvalue h0 þ ϵn > 0. The class CI*
condition fH − h0; Jg ¼ 0 implies that vn− ≡ Jvnþ ∈ V
satisfies Hvn− ¼ ðh0 − ϵnÞvn−. Whether ϵn ¼ 0 or not,
vn−∝vnþ because the eigenvalues of J are �i while vn�
are both real. Hence, all eigenvectors of H come in pairs
vn� mutually related by J with respective eigenvalues
h0 � ϵn. One can choose the label n such that ϵn ≥ 0.
Because vn� form a complete set of basis vectors, the
general solution of Hamilton’s equations dv=dt ¼ JHv is
given by v ¼ P

n;� cn�ðtÞvn� with the time-dependent
coefficients satisfying

d
dt

�
cnþ
cn−

�
¼

�
0 −h0 þ ϵn

h0 þ ϵn 0

��
cnþ
cn−

�
: ð4Þ

This yields

cn� ¼ Anðh0 � ϵnÞ−1=2 cosðωntþ αn ∓ π=4Þ; ð5Þ

where An, αn are constants and ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h20 − ϵ2n

p
is the

physical eigenfrequency. This clearly shows that the edge
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states with ϵn0 ¼ 0 have the physical frequency ωn0 ¼ h0
higher than those of the bulk modes with ϵn ≠ 0.
While our topological characterization of class CI

Hamiltonians is interpreted in the classical mechanical
framework, previous studies of topological spin waves
[5,27,28] focused on eigenvalues of iJH in the
Bogoliubov-de Gennes formalism. To the best of our
knowledge, their approach seems to always predict
gapless edge modes, and consequently Ref. [5] missed
the topological nature of MSSWs.
To summarize, classical problems with a metric have a

natural candidate for chiral symmetry in Γ ¼ iJ ¼ iω−1∘g.
If H up to a constant shift anticommutes with Γ, the (real)
eigenvectors ofH do coincide with the physical eigenstates,
while its eigenvalues h0 � ϵn correspond to the physical
eigenfrequencies ωn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h20 − ϵ2n

p
. If there is a “gapless”

edge “state” of H (ϵn0 ¼ 0) protected by a CI semimetal
structure, there exists an edge-localized physical eigen-
state whose frequency (ωn0 ¼ h0) appears above the bulk
frequency spectrum.
The general framework presented above requires only the

specified symmetry conditions. We now demonstrate that all
those assumptions are almost faithfully respected by dipolar
spin waves traveling perpendicular to the magnetization [8].
Consider a simple cubic lattice of classical spins interacting
only with an external magnetic field B > 0 along z direction
and between each other via dipole-dipole interactions. The
ground state satisfies sn ¼ ð0; 0; 1Þ, n ∈ Z3 where sn is the
normalized spin vector at site n. The energy function of spin
waves in terms of the linearized spin components sn ≈
ðsxn; syn; 1 − fðsxnÞ2 þ ðsynÞ2g=2Þ yields [29]

E ¼ B0X
n

sαnsαn −G
X
n≠n0

∂2

∂nα∂n0β
�

1

jn − n0j
�
sαns

β
n0 ; ð6Þ

where sums over α, β ¼ x, y are implicit, B0 ¼ Bþ 4πG=3
[30], and the constants B and G are appropriately normal-
ized. sxn and syn are identified to be pn; qn respectively, with
the area two form of the sphere (phase space of sn) acting as
the symplectic two-form ω [32]. The system comes with the
Euclidean metric g ¼ δαβ of the spin configuration space,
with which the Hamiltonian H is identical to E as a matrix.
Applying spatial Fourier transform, H decomposes over the
Brillouin zone as two-by-two matrices Hk ¼ ðBþDkÞ1þ
Skσ1 þ Ckσ3 (1 is the unit matrix) each acting on ðpk; qkÞ.
For k ≈ 0, i.e., in the long-range limit, the coefficient
functions are approximated by

Dk ¼ 2πG
k2x þ k2y
jkj2 ; Sk ¼ 2πG

2kxky
jkj2 ;

Ck ¼ 2πG
k2x − k2y
jkj2 : ð7Þ

Hk is already in the class CI* canonical form Eq. (3) with
h0 ¼ BþDk and has complex conjugation as a T sym-
metry. σ2 is identified with a chiral symmetry, which is exact
when Dk is constant. To compute the winding number, note
Uk ¼ Ck − iSk as stated below Eq. (3). Substituting it into
Eq. (2) yields w0 ¼ −2 around the origin (and kz axis),
proving that the dipolar Hamiltonian is topologically
nontrivial. Although expressions for Dk, Sk, Ck away from
the origin are not available in a closed analytical form,
they can be numerically evaluated by Ewald’s method [33]
as plotted in Fig. 3. One confirms Uk ≠ 0 along k ¼
ð0; π; kzÞ; ðπ; 0; kzÞ andUk ¼ 0 (i.e., a vortex line is located)
along k ¼ ðπ; π; kzÞ [26]. Thus, the topology of the dipolar
spin wave Hamiltonian is characterized by ðw0; w1; w2Þ ¼
ð−2; 0; 0Þ. All the 1D slices for fixed kx, kz ≠ 0, π have
winding numbers �1. Note that the slices �ðkx; kzÞ are
paired by the reality condition (“T symmetry”) and represent
the same physical degrees of freedom. Therefore, when a
surface is cut along x-z plane, one surface mode for each kx,
kz is expected.
Strictly speaking, the bulk-edge correspondence is valid

only ifDk is constant. It is satisfied on the kz ¼ 0 slice in the
long-range limit asDk → 2πG and the eigenfrequency of the
corresponding edge mode should be ω ¼ Bþ 2πG, which
is precisely the frequency of MSSWs for kz ¼ 0. Although
Dk deviates from 2πG for kx;y of order unity, the numerical
calculation shows the k dependence isweak so that the chiral
symmetry is approximately satisfied for kz ¼ 0 (Fig. 3).
In contrast, on planes with constant kz ≠ 0, Dk varies as
much as Sk orCk does and chiral symmetry is violated. This
can explain the lack of robustness of obliquely traveling
MSSWs. Physically, we expect the chiral symmetry break-
ing termDk to shift the frequency of the edgemodes relative
to that of bulkmodes, eventually causing them tomergewith
the bulk band and disappear. To our knowledge, the fate of
the class AIII bulk-edge correspondence when strict chiral
symmetry is broken while the bulk winding is still well
defined is an open mathematical problem.
Finally, we discuss the chiral, unidirectional propagation

of MSSWs. When a surface is cut in the y direction as in
Fig. 1(b), edge states appear on the surface Brillouin zone
except for the projections of the bulk vortex lines kx ¼ 0; π.
Thus, the edge states always have nonzero components
of kx and one can define their chirality with respect to the

FIG. 3. Numerically evaluated Fourier transform of the
Hamiltonian (6) for constant kz slices (we set G ¼ 1): Dk (left),
Sk (center), and Ck (right) with kz ¼ 0 (blue), 0.2π (green), and
0.5π (yellow).
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x direction. The reality condition T means the pair of edge
states at�ðkx; kzÞ are physically identical so that the sign of
kx itself cannot decide the direction of propagation. This
however also implies there is one propagating mode for the
pair of states, which is thus necessarily chiral [i.e., it can
propagate in only one of �ðkx; kzÞ directions]. The “chiral
symmetry” Γ is indeed correlated with the direction of
propagation in the following way. Recall that class AIII
edge states are eigenstates of Γ with their eigenvalues
s ¼ �1 for windings �1 [18,19,21]. Because of the T
symmetry, edge states with s ¼ �1 are paired up and form
a single physical eigenstate. An explicit computation [26]
shows that s ¼ þ1 for kx≷0 gives edge modes traveling in
the positive and negative x directions, respectively.
In conclusion, we have established the notion of class CI

semimetals characterized by even windings around vortex
defect lines and explained how they arise in certain
classical mechanical systems. We constructed a chiral
symmetry operator from the symplectic two form and a
metric. We showed that the corresponding chiral symmetric
classical systems can support topologically protected edge
modes with their eigenfrequencies appearing above the
bulk spectrum. The framework is applicable to MSSWs for
kz ¼ 0 and reproduces all of their characteristic features.
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