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One of the challenges in strongly correlated electron systems is to understand the anomalous electronic
behavior that develops at an antiferromagnetic quantum critical point (QCP), a phenomenon that has
been extensively studied in heavy-fermion materials. Current theories have focused on the critical spin
fluctuations and associated breakdown of the Kondo effect. Here we argue that the abrupt change in the
Fermi surface volume that accompanies heavy-fermion criticality leads to critical charge fluctuations.
Using a model one-dimensional Kondo lattice, in which each moment is connected to a separate conduction
bath, we show that a Kondo breakdown transition develops between a heavy Fermi liquid and a gapped spin
liquid via a QCP with ω=T scaling, which features a critical charge mode directly associated with the
breakup of Kondo singlets. We discuss the possible implications of this emergent charge mode for
experiments.
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Introduction.—The relation between valence fluctuations
and the Kondo effect has long fascinated the physics com-
munity [1]. A partially occupied atomic state, weakly hybrid-
ized with a conduction sea, forms a local moment [2], and its
virtual valence fluctuations give rise to low-frequency spin
fluctuationswhile leaving its charge essentially frozen.On the
other hand, in heavy-fermion systems, theKondo screeningof
the local moments gives rise to an enlargement of the Fermi
surface, a phenomenon that is well established both theoreti-
cally [3,4] and through Hall coefficient [5], quantum oscil-
lation [6], angle-resolved photoemission spectroscopy, and
scanning tunneling microscopy measurements [7,8]. The
large Fermi surface of a Kondo lattice is believed to partially
collapse when Kondo screening is disrupted [9–16] at an
antiferromagnetic (AFM) quantum critical point (QCP), a
phenomenon known as “Kondo breakdown” (KBD).
Recently, a number of experiments have observed a

coincidence of critical charge fluctuations at the magnetic
quantum critical points in CeRhIn5 [17], YbRh2Si2 [18],
and β-YbAlB4 [19]. Watanabe and Miyake have argued
that the development of soft charge fluctuations near a
heavy-fermion QCP is likely a result of a quantum-critical
end point, in which a first-order valence changing transition
line is suppressed to low temperatures [20–24]. Here we
present an alternative view, arguing that the coincidence of
soft charge fluctuations and Kondo breakdown is a natural
consequence of the Fermi surface collapse.
In the 1980s, Anderson introduced the concept of a

nominal valence to distinguish the valence of a rare earth
ion inferred from the apparent delocalization of f electrons
[25,26], from the core-level valence, inferred from spec-
troscopy. From this perspective, a shift in the nominal
valence is associated with the formation of a large Fermi

surface, even in a strict Kondo lattice where the core-level
valence is fixed. Interpreted literally, this implies a kind of
many-body ionization in the Kondo lattice, in which a
fractionalization of local moments into charged heavy
electrons leaves behind a compensating positive background
of Kondo singlets [27]. Taken to its logical extreme, such an
interpretation would then imply that, at the KBD quantum
critical point, degenerate fluctuations in the nominal valence
will give rise to an observable soft charge mode.
While Kondo breakdown has been extensively modeled

at an impurity level [28,29] and simulated using the
dynamical mean-field theory [10,30,31], a possible link
with charge fluctuations has not so far been explored in the
lattice. To examine this idea, we introduce a simple field-
theoretic framework for Kondo breakdown, employing a
Schwinger boson representation of spins that permits us to
treat Kondo screening and antiferromagnetism [32,33]. An
early application of this method demonstrated its efficacy
for describing a ferromagnetic quantum critical point [34]
in a Kondo lattice. Here we consider a Kondo screened one-
dimensional (1D) AFM [Fig. 1(a)], examining the quantum
phase transition between a spin liquid and a Fermi liquid
[Fig. 1(b)]. The conduction electron phase shift (related
to the Fermi surface size) jumps at T ¼ 0 [Fig. 1(c)],
indicating that the QCP is a KBD transition. Additionally,
we find that the KBD features a zero point entropy
[Fig. 1(d)]. In our calculations, we observe that the
KBD is linked to the emergence of a gapless charge degree
of freedom at the QCP which occurs in natural coincidence
with a divergent charge and staggered spin susceptibility.
The simplified 1D Kondo lattice is a chain of antiferro-

magnetically coupled spins, each individually screened by
a conduction electron bath:
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H ¼
X
j

½HCðjÞ þ JKS⃗j · σ⃗j þ JHS⃗j · S⃗jþ1�: ð1Þ

Here S⃗j is the spin at the jth site, coupled antiferromagneti-
cally to its neighbor with strength JH. HCðjÞ ¼P

p ϵpc
†
pαðjÞcpαðjÞ describes the conduction bath coupled

to the jth moment in the chain, where p is the momentum
of the conduction electron. σ⃗j ¼ ψ†

jασ⃗αβψ jβ is the spin

density at site j, where ψ†
jα ¼

P
pc

†
pαðjÞ creates an electron

on the chain at site j.
Global phase diagram.—Numerical and experimental

studies of heavy-fermion systems are often interpreted
[10,35,36] within a global phase diagram of the Kondo
lattice, with two axes: a Doniach parameter x ¼ TK=JH
[37], where TK is the Kondo temperature, and a frustration
parameter y representing the magnitude of quantum fluc-
tuations, controlled by geometrical or dimensional frus-
tration. The 1D limit provides a way to explore the two
extremes of y: On the one hand, the uniform magnetization
of a 1D FM commutes with the Hamiltonian and has no
quantum fluctuations, corresponding to y¼0 [34], whereas
a 1D AFM never develops long-range order, loosely
corresponding to y ¼ ∞. When the magnetic coupling is
Ising-like, both models can be mapped to the dissipative
transverse-field Ising model. But a Heisenberg magnetic

coupling has been proven to be difficult to treat with these
methods [38,39], and a single formalism that can access
various phases and critical points is highly desirable.
Method—We use a large-N approach, obtained by

enlarging the spin rotation group from SU(2) to SP(N),
representing the spin S local moments using Schwinger
bosons (“spinons”), according to Sαβ ¼ b†αbβ − α̃ β̃ b†−βb−α
[40,41], where α ∈ ½�1;…� N=2�, α̃ ¼ sgnðαÞ, and
nbðjÞ ¼ 2S is the number of bosons per site. Each moment
is coupled to a K-channel conduction sea, with
Hamiltonian

H ¼
X
j

½HAFMðjÞ þHKðjÞ þHCðjÞ þHλðjÞ�; ð2Þ

where

HAFMðjÞ ¼ −ðJH=NÞðα̃b†jαb†jþ1;−αÞðβ̃bjþ1;−βbjβÞ;
HKðjÞ ¼ −ðJK=NÞðb†jαψ jaαÞðψ†

jaβbjβÞ;
HλðjÞ ¼ λj½nbðjÞ − 2S�: ð3Þ

Here we have adopted a summation convention for the
repeated Greek α ∈ ½�1;�N=2� spin and Roman a ∈
½1; K� channel indices. The Lagrange multiplier λj imposes
the constraint nbðjÞ ¼ 2S: We take 2S ¼ K ¼ 2sN for
perfect screening, where s is kept fixed.
We carry out the Hubbard-Stratonovich transformations:

HKðjÞ → ½ðb†jαψ jaαÞχja þ H:c:� þ Nχ̄jaχja
JK

;

HAFMðjÞ → ½Δ̄jðα̃b†jþ1;−αb
†
j;αÞ þ H:c:� þ NjΔjj2

JH
; ð4Þ

where χja is a Grassmannian “holon” field that mediates the
Kondo effect at site j in channel a, while Δj describes
the development of singlets between site j and jþ 1. See
Ref. [34] for a discussion of spurious first-order transitions
and their remedy.
A mean-field resonant valence-bond (RVB) description

of the 1D magnetism is obtained from a uniform
mean-field theory where Δj ¼ iΔB=2, and λj ¼ λ, giving
rise to a bare spinon dispersion ϵBðpÞ ¼ ½λ2 − Δ2

p�1=2, with
Δp ¼ ΔB sinp. Both b and χ fields have nontrivial dynam-
ics [32,34,42–44], with self-energies

ΣχðτÞ ¼ g0ð−τÞGBðτÞ; ΣBðτÞ ¼ −γg0ðτÞGχðτÞ: ð5Þ

Here, γ ¼ K=N ¼ 2s and GχðτÞ, GBðτÞ, and gðτÞ are the
local propagators of the holons, spinons, and conduction
electrons, respectively. The conduction electron self-energy
is of the order of Oð1=NÞ and is neglected in the large-N
limit, so that g0ðτÞ is the bare local conduction electron
propagator. The holon Green’s function GχðzÞ ¼
½−J−1K − ΣχðzÞ�−1 is purely local, whereas the spinons are

FIG. 1. (a) Model 1D Kondo lattice, with local moments (red)
with an AFM Heisenberg coupling JH, individually screened by
separate conduction electron baths (blue wires). (b) Schematic
phase diagram showing the transition between heavy-Fermi-
liquid (FL) and spin-liquid (SL) phases at a QCP which evolves
to a fan of strange metal (SM) at a finite temperature. (c) Con-
duction electron phase shift δc as a function of TK=JH , which
extrapolates to a steplike jump from 0 to π=N as T → 0. (d) Color
map of entropy SðTÞ, showing the collapse of energy scales at the
QCP: The dashed line separates localized (Δ ¼ 0 to the right) and
delocalized (Δ > 0 to the left) spinon regimes. Inset: Temperature
cuts showing the accumulation of entropy at the QCP.
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delocalized by the RVB pairing with propagator
GBðp; zÞ ¼ ½zτz − λ1 − Δpτ

x −⅀BðzÞ�−1. The self-energy
⅀BðzÞ is diagonal in Nambu space, while the momentum
sum in Gloc

B ðzÞ¼P
pGBðp;zÞ can be done analyti-

cally [45].
Stationarity of the free energy with respect to λ enforces

the mean-field constraint hnbðjÞi ¼ K and with respect to
ΔB determines the relation ΔBðJHÞ [45]. We solve these
self-consistent equations numerically on the real-frequency
axis using linear and logarithmic grids.
The two limits.—In the absence ofKondo screening (when

TK=JH is small), the constraint is satisfied with λ > ΔB. This
Schwinger boson model describes a bipartite spin chain, in
which each sublattice is in the symmetric spin-S representa-
tion of SPðNÞ [40,41]: Each spin can form singlets with its
neighbors in anRVB state for any valueS. This, togetherwith
the Gutzwiller projection treated by a soft constraint, leads
to a U(1) gapped spin liquid [33], closely analogous to the
integer-spin Haldane chain [46]. A lattice with a closed
boundary condition has a unique ground state and corre-
sponds to a symmetry-protected topological phase [47].
The large TK=JH limit corresponds to a local Fermi

liquid [34,44] at each site of the chain, in which the
electrons and spinons form bound, localized singlets,
protected by a spectral gap of the size TK; the remaining
electrons are scattered with a phase shift δc ¼ π=N.
Figure 1(b) summarizes the phase diagram as TK=JH is
varied between the above two limits, which we discuss in
the following.
Ward identity, entropy, phase shifts.—At large N, the

many-body equations can be derived from a Luttinger Ward
functional, leading to an exact relation between the con-
duction electron and holon phase shifts δc ¼ δχ=N and a
closed form formula for the entropy [43,44]. Figure 1(c)
shows the conduction electron phase shift Nδc=π as a
function of TK=JH. In the Fermi liquid, δχ ¼ Nδc is equal
to π, equivalent to a large Fermi surface, but it is zero in
the spin-liquid regime. Extrapolating the calculations to
T → 0, the phase shift appears to jump at the QCP
separating the spin liquid (decoupled electrons) and the
Fermi liquid. From the perspective of conduction electrons,
both SL and FL phases are Fermi liquids, and the transition
in δχ is a measure of change in the Fermi surface, a
manifestation of KBD.
Entropy.—Figure 1(d) shows the color map of the

entropy SðTÞ across the phase diagram. The gray dashed
line indicates a second-order phase transition for the
internal variable ΔB that separates a local Fermi liquid
(ΔB ¼ 0) from a delocalized regime (ΔB > 0). The col-
lapse of the energy scale from both sides is visible. Unlike
the 1D ferromagnetic QCP [34], the antiferromagnetic
QCP develops a residual entropy SE=N ≈ 1=20 at a spin
of s ¼ 0.1 per moment [inset in Fig. 1(d)].
Magnetic excitations.—Figure 2(a) shows the spinon

spectrum G00
Bðω − iδÞ vs TK=JH at T=TK ¼ 0.03.

Approaching the transition from the Fermi-liquid side
(right), the spinon spectrum shifts to positive frequencies
and, maintaining the overall gap size, brings the gap edge
close to the chemical potential, and only then does the hard
gap close at the QCP. Passing through the critical point, the
gap reopens due to development of short-range RVBs in the
spin-liquid regime. Figure 2(b) shows the temperature
dependence of the staggered spin susceptibility χπ, which
acquires a logarithmic temperature dependence χπ ∼
− logT at the QCP. The Fermi liquid (blue) exhibits a
crossover from Curie law 1=T to a Pauli form 1=TK , with a
characteristic peak at T=TK ∼ 0.1. As TK=JH is reduced the
peak position is unchanged (unlike the 1D FM case [34]),
whereas the low-temperature susceptibility develops a
logarithmic divergence. Similar divergence is observed
in local spin susceptibility, but the uniform susceptibility
is merely suppressed by the magnetism [45].
The holon spectrum.—G00

χðω − iηÞ shows a striking
behavior at the QCP [Fig. 3(a)]. Most of the spectral
weight is contained in a sharp holon mode which crosses
the chemical potential as TK=JH is tuned from a Fermi
liquid (right) to a spin liquid (left). In the critical regime at a
finite temperature, the holon mode is pinned to the Fermi
energy over a finite range of the Doniach parameter, which
shrinks to a point as T → 0, forming a strange metal (SM)
regime at a finite temperature with deconfined critical holon
and spinon modes.
ω=T scaling.—At the QCP, the holon mode lies at zero

energy. Figure 3(b) shows that the holon spectra at different
temperatures collapse onto a single scaling curve
G00

χðω; TÞ ¼ T−αfðω=TÞ. For s ¼ 0.1, we find α ¼ 0.6,
consistent with a scaling analysis [45]. The universality
class of the QCP appears to be that of an overscreened
impurity model [32], with an effective number of chan-
nels Keff=N ¼ ð1=α − 1Þ ≈ 0.67 > 2s.
The holon modes have an emergent coupling to the

electromagnetic field, mediated via the internal vertices of
the lattice Kondo effect. In particular, the field theory
implies an Oð1Þ vertex correction that couples to the

FIG. 2. (a) The calculated spectral function of spinons
G00

Bðω − iηÞ at T=TK ¼ 0.03 shows confined spinons protected
by a gap in the FL and SL and deconfined with a soft excitation
gap in the SM regime. (b) Staggered spin susceptibilities vs T=TK
for various values of TK=JH from SL (in green) and FL (in blue)
passing the QCP (in red). A log divergence at the QCP is visible.
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electric potential as shown in Fig. 3(c). At low energies,
the vertex can be approximated by Γχ ¼ −ðd=dωÞΣχ.
This quantity perfectly cancels the wave function renorm-
alization of the holon propagator Gχ ≈ Zχ=ω, where
Zχ ¼ −½∂ωΣχ �−1, so that the holon couples to the electric
potential with a net charge ΓχZχ ¼ þ1. Figure 3(d) shows
the charge susceptibility calculated using this vertex
correction. At the QCP, the temperature dependence of
the holon charge susceptibility acquires a Curie-like tem-
perature dependence χρ ∼ 1=T.
Discussion.—We have studied a simplified Kondo lattice

model in the large-N limit, enabling us to extract the KBD
physics directly on a lattice. It is illuminating to note that
both the specific heat and spin susceptibility [45] disagree
with the predictions of Hertz-Millis theories of the KBD
based on using hybridization as an order parameter [14,15].
One of the striking features of our description of the

KBD quantum critical point is the presence of an emergent,
spinless critical charge mode with a Curie-like charge
susceptibility. Our model calculations can be extended in
various ways, by going to higher dimensions, by general-
izing to the mixed valence regime, and with a considerable
increase in computation, to a model in which a single bath
is shared between all moments. In the general Kondo
lattice, the charge conservation Ward identity links the
change in the volume of the conduction electron Fermi
surface ΔvFS to the charge density of the Kondo singlets,
described by the holon phase shift [43]

N
ΔvFS
ð2πÞ3 ¼

X
p

1

π
Im ln½−G−1

χ ðp; zÞ�z¼0þiδ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{δχ=π

: ð6Þ

Quite generally, the holon phase shift is zero or π in the
localized magnetic or Fermi-liquid phases, respectively, but
must jump between these two limits at the quantum critical
point establishing critical holons. This and the Oð1Þ charge
vertex lead to critical charge fluctuations, independent of
the details of the model. This strongly suggests that the
gapless holon mode seen in our model calculation will
persist at a more general Kondo breakdown quantum
critical fixed point. Whether the Ward identity remains
valid in models with reduced symmetry is something we
leave for the future.
This raises the fascinating question of how the predicted

critical charge modes at KBD might be observed exper-
imentally. One mode of observation is via the coupling to
nuclear Mossbaüer lines [48]. A recent observation of the
splitting of the Mossbaüer line shape [19], characteristic of
slow valence fluctuations, may be a fingerprint of these
slow charge fluctuations.
Another interesting question is whether the residual

entropy of the QCP might survive beyond the indepen-
dent bath approximation. A residual ground-state entropy
is a signature of infinite-range entanglement and has been
seen in various quantum models, such as the two-channel
Kondo model [49–51] or the Sachdev-Ye-Kitaev model
[52–54]. In the single-channel Kondo problem, the
Kondo screening length [55] ξK ∼ vF=Teff

K plays the role
of an entanglement length scale, beyond which the
singlet ground state is disentangled from the conduction
sea. If the collapse of the Kondo temperature Teff

K → 0 at
the QCP of a Kondo lattice involves a divergence of the
entanglement length ξK → ∞, the corresponding quan-
tum critical point would be expected to exhibit an
extensive entanglement entropy. Such naked quantum
criticality is likely to be censored by competing ordered
phases that consume the entanglement entropy of the
critical regime, concealing the QCP beneath a dome of
competing phase, such as superconductivity.
Lastly, a peculiar feature of strange metals in heavy

fermions is that the resistivity tends to be linear in T over a
wide range of temperatures. At present, such behavior can
only derived from quenched disorder models [56]. One of
the fascinating implications of a Curie-law charge suscep-
tibility χρ ∼ 1=T seen in our calculations is that, if
combined with a temperature-independent diffusion of
incoherent holon motion, it would give rise to a Curie
conductivity (linear resistivity ρ ∝ 1=σ ∼ T) via the
Einstein relation σ ¼ Dχc ∼ 1=T, where D is the holon
diffusion constant. This raises the interesting possibility
that linear resistivities are driven by an emergent critical
charge mode.

FIG. 3. (a) Calculated spectrum of holons G00
χ ðω − iηÞ showing

that the holon mode crosses the chemical potential at the QCP.
(b) ω=T scaling of the holon Green’s function G00

χ ðω − iηÞ at the
QCP. The inset shows the holon mode before scaling. (c) The
Oð1Þ charge vertex of holons coupling them to potential
fluctuations. (d) The charge susceptibility computed via this
vertex corrections (inset) shows a T−1 divergence at the QCP
point (red) and its suppression in SL and FL sides.
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