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We show that vortex matter, that is, a dense assembly of vortices in an incompressible two-dimensional
flow, such as a fast rotating superfluid or turbulent flows with signlike eddies, exhibits (i) a boundary layer
of vorticity (vorticity layer) and (ii) a nonlinear wave localized within the vorticity layer, the edge wave.
Both are solely an effect of the topological nature of vortices. Both are lost if vortex matter is approximated
as a continuous vorticity patch. The edge wave is governed by the integrable Benjamin-Davis-Ono
equation, exhibiting solitons with a quantized total vorticity. Quantized solitons reveal the topological
nature of the vortices through their dynamics. The edge wave and the vorticity layer are due to the odd
viscosity of vortex matter. We also identify the dynamics with the action of the Virasoro-Bott group of
diffeomorphisms of the circle, where odd viscosity parametrizes the central extension. Our edge wave is a
hydrodynamic analog of the edge states of the fractional quantum Hall effect.
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Introduction.—In this Letter, we focus on an exemplary
problem of hydrodynamics: a blob of vorticity consisting of
a dense assembly of signlike point vortices in a 2D
incompressible inviscid fluid, vortex matter; see Fig. 1.
The question we ask is whether and how a “quantization,”
or discreteness, of vortices affects large scale flows.
The standard examples of vortex matter are quantum

fluids: rotating superfluid helium [1] and Bose-Einstein
condensate (see, e.g., [2]), where the circulation of vortices
are quantized. In classical fluids, vortex matter arises in the
inverse cascade of a turbulent flow when small eddies
congregate into large signlike Onsager’s vortex clusters
[3,4]. There are numerous examples in atmospheric,
oceanic, and aeronautic physics, as well as astrophysics
(tornadoes, hurricanes, pulsars). Vortex matter is also a
subject of what is called quantum turbulence [5]. A closely
related topic is active rotor media, where fluid particles
possess rotational degrees of freedom (see, e.g.,
[6]). An understanding of the motion of vortex matter is
also important for the “vortex method” in computational
hydrodynamics, which approximates vorticity by discrete
vortices [7,8]. The fundamental importance of vortex
matter emerged in the theory of the fractional quantum
Hall effect (FQHE) [9]. There, electrons effectively bound
to localized magnetic fluxes move like vortices in an
incompressible fluid.
In the listed cases, vortex matter is a liquid. However, it is

a special class of liquid whose constituents possess a
topological characterization, the circulation. Interactions
between topological textures is nonlocal and have a geo-
metric nature. This makes their flows different.
The naive approximation where vortex matter is treated

as a uniform vorticity is a classical flow known as a
vorticity patch, or a Rankine vortex. It is a domain of a

uniform vorticity, surrounded by an irrotational flow. We
will show that this approximation fails: the topological
characterization of microscale fluid constituents has
nowhere to hide. It affects large scale flows.
The dynamics of a vortex patch is the motion of its

boundary. It does not possess linear traveling waves. This
changes if the vorticity patch is an aggregation of small
vortices, a sort of discretized Rankine vortex. We will show
that the indestructible discreteness of vortices yields a
linear edge mode propagating within a new kind of a
boundary layer, the vorticity layer. The vorticity layer and
the edge mode would have been lost had vortex matter been
treated as a continuous vorticity. The vorticity layer acts
towards the stabilization of the violent filaments in the
unstable dynamics of the Rankine vortex (see, e.g., [8,10]).
We find the dispersion of the edge mode to be nonanalytic

Ek ¼ Ūkþ 2ηkjkj; η ¼ Γ=8π: ð1Þ
The wave travels against the overall rotation of the
layer with velocity Ū ¼ Γ=

ffiffiffiffiffiffiffiffiffi
16πl

p
, where l is the mean

FIG. 1. (Left) The circular blob with a boundary layer. (Right)
The blob y < 0 is squeezed relative to the continuous vorticity
patch y < h̄; a vortex trapped in the boundary layer B∶0 < y ≤ h
illustrates charge one soliton. (Side) Illustration of the overshoot
in the vortex density.
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intervortex distance and −Γ is the circulation of each
vortex. The coefficient η has the dimension of viscosity.
We identify it with the odd viscosity of [11,12].
Our main result is the dynamics of the edge mode

beyond the linear approximation. We show that the edge
wave is governed by the celebrated Benjamin-Davis-Ono
(BDO) equation (often abbreviated as Benjamin-Ono) [13].
It is an integrable equation and it exhibits solitons. A
remarkable property of BDO is that solitons possess a
quantized vorticity. This property reveals the topological
character of vortices. Our edge mode is a classical
prototype of the FQHE edge state [14].
We emphasize two other results: (i) we identify the

boundary conditions at the vorticity layer, and (ii) we show
that the edge dynamics is the action of the Virasoro algebra,
whose central extension is the odd viscosity.
Kirchhoff equations.—We recall the notion of theRankine

vortex (vortex patch), thenaive coarse-grained approximation
of vortex matter. It is a domain D of uniform vorticity,
surrounded by an irrotational flow. The motion of the
boundary of the Rankine vortex, also called the vorticity
jump, governs by the kinematic boundary condition (KBC). It
states that thevelocity of the interface (the front) is thevelocity
of the fluid parcel on the front. We denote the vorticity of a
clockwise vortex (anticyclonic) patch by −2Ω < 0 and use
the frame rotating anticlockwise with the frequencyΩ. Then,
if zðtÞ is the complex coordinate of the front andu ¼ ux − iuy
is the complex velocity of the flow, the KBC reads

_̄z ¼ uzjzðtÞ; uz ¼ −iΩz̄þ i
Ω
π

Z
DðtÞ

dV 0

z − z0
: ð2Þ

This equation, called contour dynamics (or CDE), has been
extensively studied (see, e.g., [10]).
Wewill formulate the problem of the discretized Rankine

vortex with the help of the Kirchhoff equations (see, e.g.,
[15]). Recall that velocity of the form

uzðz; tÞ ¼ −iΩz̄þ i
2π

XN
i¼1

Γi

z − ziðtÞ
ð3Þ

is a solution of the Euler equation

_uþ ðu ·∇Þu ¼ −∇p − 2Ω × u; ∇ · u ¼ 0 ð4Þ

if and only if the trajectories of the vortices ziðtÞ obey the
Kirchhoff equations

_̄zi ≡ vi ¼ −iΩz̄i þ
i
2π

XN
i≠j

Γj

ziðtÞ − zjðtÞ
: ð5Þ

Both equations are written in the rotating frame. If the
circulations of all vortices are set equal (they do not change
due to the Kelvin theorem),

−Γi ¼ −Γ < 0; ð6Þ

which is the case we consider, the Kirchhoff equations are
the discrete version of the CDE (2). The question we ask is
whether the CDE captures the hydrodynamics of vortex
matter. We show that it does not. Even at vanishing spacing,
the motion of a patch of tightly packed vortices does not
match its naive continuous version.
The approximation fails at the boundary. The bulk

vortices can indeed be approximated by a uniform density
ρ∞ ¼ 2Ω=Γ [16]. However, we will see that forces acting
within vortex matter squeeze the blob, pushing the boun-
dary inward. Squeezed vortices build a singular boundary
layer with a sharp peak of vorticity, the overshoot,
schematically shown in Fig. 1. Unlike the known boundary
layers, such as the Stokes and Ekman layers, our layer
occurs in inviscid fluids. The edge waves that we study are
the motion of the overshoot.
To isolate the effect, we focus on the near-circular patch,

whose continuous version is a stationary circular Rankine
vortex. It shows no dynamics whatsoever. In this limit, the
vortex density ρðrÞ ¼ P

i≤N δðr − riÞ, is approximated by a
step function ρ0ðrÞ ¼ ρ∞ΘðR0 − rÞ supported by a disk of
the area πR2

0 ¼ Nρ−1∞ .
Near-circular, near-stationary flows are selected by zero

angular impulse [15]. In units of fluid density,

L≡X
i

ri × vi ¼ 0 ð7Þ

(vi is the velocity of a vortex). The true vortex matter
possesses a scale, the intervortex spacing l ¼ ρ−1=2∞ .
Vorticity layer (overshoot).—The vortex density signifi-

cantly departs from the step function ρ0ðrÞ within a few
spacing units from the boundary of the equivalent Rankine
vortex, forming a boundary singularity, the overshoot ρ̌ ¼
ρ − ρ0 (Fig. 1). Numerical data of the stationary overshoot
are available from the studies of the electronic density in
FQHE (see, e.g., [17]), a closely related problem. The data
show that the overshoot is an asymmetric peak centered
inward, with decaying oscillations into the bulk. We outline
the properties of the overshoot first, before presenting
supportive arguments. Some of them were obtained in
[19,20], and some are new.
We will see that forces of vortex matter squeeze the blob,

pushing the vorticity jump inward R0 → R ¼ R0 − h̄ by
the distance h̄ ¼ l=

ffiffiffiffiffiffi
8π

p
. This is a new effect; previously,

the value of the squeezing h̄ was correctly estimated via a
numerical fit by [18]. We comment that, in a related
problem of a superfluid fluid confined in a rotating
container, the impact of discreteness of vortices on the
size of the blob has been known since the 1960s: vortices
repel from the walls of the container [1,21,22].
Inside the squeezed blob r < R we may treat vorticity as

uniform ρ ¼ ρ∞. Hence, the circular vorticity jump r ¼ R
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does not evolve. We adopt a weakly nonlinear, long-wave
approximation, where we neglect the curvature of the blob
and treat the blob as the lower half-plane y < 0 with local
coordinates y ¼ r − R; dx ¼ −Rdθ.
The gap that emerges between the vorticity jump and the

irrotational flow is the vorticity layer. It is a strip with a
fixed bottom and a varying top y ¼ hðxÞ, the front of the
ambient flow

B ¼ fy∶0 < y ≤ hðxÞg: ð8Þ

The front oscillates about the boundary of the equivalent
Rankine vortex y ¼ h̄≡ ð1=2πÞ H hdθ. We assume that
near-stationary flows are in the state of local equilibrium:
the mean radial line density is uniform along the boun-
dary ðδ=δhÞ R ρðx; yÞdy ¼ ρ∞.
The first two moments of the overshoot ρ̌ðrÞ ¼

ρðrÞ − ρ0ðrÞ, the line density, and the dipole moment
(about the vorticity jump) determine the dynamics

nðxÞ ¼
Z

ρ̌ðx; yÞdy; dðxÞ ¼ −
Z

yρ̌ðx; yÞdy: ð9Þ

The line density n is the density of vortices trapped in B:
nðxÞ ¼ R

B ρðx; yÞdy. The local equilibrium yields

nðxÞ ¼ ρ∞½h̄ − hðxÞ�: ð10Þ

This is our edge mode.
We find the exact mean values of the dipole moment of

the dipole moment d̄ ¼ ð1=2πÞ H ddθ and the squeezing

d̄ ¼ 1=8π; h̄2 ¼ l2d̄: ð11Þ

We see that d̄ does not vanish at l → 0. This suggests that
the density possesses a singular double layer at the vorticity
jump [19,20]. Summing up, we represent the overshoot as a
simple and the double singular layers located at the actual
vorticity jump y ¼ 0

ρ̌ðx; yÞ ¼ −nðxÞδðyÞ þ dðxÞδ0ðyÞ þ � � � : ð12Þ

The simple layer means a jump of the azimuthal velocity

UðxÞ≡ ð1=2Þdisc
y¼0

½ux� ¼ ΩhðxÞ: ð13Þ

The layer speeds up by the mean velocity Ū ¼ Ωh̄ with
respect to the squeezed blob.
We will also see that the moments are not independent.

They move subject to the relation

d − hdHx ¼ ðh=lÞ2; ð14Þ

where fHðxÞ ¼ π−1
R
(fðx0Þ − fðxÞ)=ðx0 − xÞdx0 is the

Hilbert transform, and dx ¼ ∂xd.

Now we support these claims.
The angular impulse.—The value of the mean dipole

moment (11) promptly follows from the identity for the
angular impulse (7) L ¼ Ω

P
r2i − ðΓ=4πÞNðN − 1Þ. The

identity follows from the Kirchhoff equations (5) (with all
Γi equal) after a multiplication by zi and summation over all
vortices. The last term in L is the number of vortex pairs.
The term ðΓ=4πÞN2 ¼ Ω

R
ρ0r2dV is the angular momen-

tum of the continuous Rankine vortex. The subleading term
ðΓ=4πÞN counts the excluded terms i ¼ j in the sum (5),
reflecting the discreteness of vortex matter. With the help
of (9) we obtain

L ¼ Ω
Z

r2ρ̌dV þ ðΓ=4πÞN ¼ NΓð−2d̄þ 1=4πÞ: ð15Þ

Hence, L ¼ 0 flows possess a dipole moment (11).
Stream function.—We may now evaluate the stream

function

ΨðrÞ ¼ ðΓ=2πÞ
Z

log jr − r0jρdV 0 − ðΩ=2Þr2 ð16Þ

and the velocities ux ¼ ∂yΨ; uy ¼ −∂xΨ outside of B. The
stream function consists of the rotational part representing
the solid rotation of the squeezed blob

y ∉ B∶ Ψðx; yÞ ¼ Ωð2h̄y − y2ÞΘðyÞ þ ψðx; yÞ ð17Þ

and the irrotational part generated by the double layer

ψ ¼ Γ
2π

∂y

I
log jz − x0jdðx0Þdx0

≈
Γ
2
½sgnðyÞdþ ydHx �: ð18Þ

Contrary to the Rankine vortex, the stream function jumps
through the double layer. These formulas and (13) yield the
boundary values of velocity

y ¼ �0∶ ux ¼ 2UΘðyÞ þ Γ
2
dHx ; uy ¼ �Γ

2
dx; ð19Þ

y ¼ h∶ ux ¼ Γnþ Γ
2
dHx ; uy ¼ −

Γ
2
dx: ð20Þ

Assuming the relation (14) we express the boundary values
of the stream function through the front

Ψj∓0 ¼ ∓ðΓ=2Þd ¼ ∓ðΩh2 − ηhHx Þ; ð21Þ

Ψjh ¼ 2Ωh̄hþ 2ηhHx ; ð22Þ

where

η ¼ Γd̄: ð23Þ
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Balance of forces.—Now we are ready to obtain (14). It
follows from the principle of continuity commonly used in
weak solutions of hydrodynamics.
We look for the extremum of the free energy

E − 2ΩL ¼
�Z

r<R

�
u2

2
− 2ΩΨ

�
þ
Z
r>R

u2

2

�
dV: ð24Þ

with respect to the squeezing h ¼ R0 − R. The extremum
condition δðE − 2ΩLÞ ¼ 0 is equivalent to the continuity
of the free energy density across the jump. It ensures the
balance of the Coriolis and centrifugal forces

balance at y ¼ 0∶ − 2ΩΨj−0 ¼ ð1=2Þdisc
y¼0

½u2x�: ð25Þ

The entries of the balance equation are given by (21) and
(19). Plugging them in, we obtain the relation (14)

ΩΓd ¼ 2U2 þ ΓUdHx : ð26Þ
Kinematic boundary conditions.—Having the stream

function in terms of the front, we now employ the KBC.
In the rotating frame, it reads

KBC∶ ð∂t − U∂xÞh ¼ −
d
dx

½ΨjhðxÞ�: ð27Þ

Combining the KBC with (22), we obtain the dynamics of
the front, our main result.
Main result: Benjamin-Davis-Ono equation.—The num-

ber of vortices (10) trapped in the line element of B evolves
according to the BDO equation

BDO∶ ð∂t þ Ū∂xÞn − ðΓ=2Þ∂xðn2 − 4d̄nHx Þ ¼ 0: ð28Þ

The linearized BDO has dispersion (1). The BDO equation
previously appeared in the description of various fluid
interfaces: density [13], vorticity [23], or shear [24]. The
BDO also emerged as a hydrodynamic description of the
Calogero model [25] and as a theory of edge states in
the FQHE [14]. See also [26] on the relation between the
Calogero model and 2D hydrodynamics.
The BDO is an integrable equation whose periodic and

solitonic solutions are explicit (see, e.g., [27]). A remark-
able property that distinguishes BDO is that the first
integral of BDO, the “charge,” is quantized in units of
8πd̄. For d̄ given by (11), the soliton charge is integer

quantization∶
I

ndx ∈ Z: ð29Þ

Edge solitons with the quantized vorticity is our major
result: the edge solitons are vortices trapped in the
overshoot. Naturally, their number is integer. Explicitly,
the 1-soliton in the frame comoving with the boundary
layer, ξ ¼ x − Ūt, is

soliton∶ nsðξ; tÞ ¼
8d̄A

ðξþ vstÞ2 þ A2
; vs ¼ ηA−1:

It carries precisely one vorticity quantum. The constant
jAj ≫ l determines the width, height, and speed of the
soliton. Bumps A > 0 travel faster, vs > 0 the overall
rotation of the layer, dents travel slower.
In the remaining part of the Letter, we obtain the

boundary conditions for vortex matter and identify the
coefficient η (23) with the odd viscosity.
Bernoulli equation and pressures.—The vorticity of the

flow outside B is uniform: −2Ω in the blob and zero
outside. Such flows are governed by the Bernoulli equation.
Let us introduce the hydrodynamic potential φ of the
irrotational flow generated by the double layer, a harmonic
conjugate of ψ , whose boundary value is φ ¼ sgnðyÞψH ¼
ðΓ=2ÞdH given by (18). Then

y ∉ B∶ _φþ u2=2þ p ¼ 0: ð30Þ

Since we already know the dynamics of the front, the
dynamics of φ allows us to read off the pressure. Omitting
the algebra, we present a Bernoulli equation evaluated at
both boundaries y ¼ 0, hðxÞ

y ∈ ∂B∶ ð∂t þ U∂xÞφ ¼ 2η∂xuy: ð31Þ

Comparing (31) to (30) we find the boundary pressure

y ∈ ∂B∶ pþ U2=2 ¼ −2η∂xuy: ð32Þ

Anomalous stress and odd viscosity.—Now we can find
the stress vortex matter exerts on the fluid outside B. It is
harmonic. Equation (32) determines the trace 2pþU2 ¼
−ðτxx þ τyyÞ and its harmonic extension

τxx þ τyy ¼ 4η∂xuy: ð33Þ

The traceless part of the stress follows from the require-
ments that the stress is dissipation-free, isotropic, and
linear. Such stress was introduced in [11] (independent
from vortex matter). It is the spin-2 tensor

τxx − τyy ¼ 2ηð∂xuy þ ∂yuxÞ;
τxy ¼ ηð∂yuy − ∂xuxÞ: ð34Þ

The coefficient η was called odd viscosity (see [28] for
studies of fluids with odd viscosity). Later it was found [12]
that the boundless vortex matter features the same stress
(there it was called the anomalous stress). The coefficient η
computed in [12] was found to be η ¼ Γ=8π as (23). We
now see that the odd viscosity has a new interpretation: it is
the dipole moment of the overshoot.
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Comparing with (34) we observe that the normal stress
vanishes. Hence, at the boundary

DBC∶ τyyj∂B ¼ 0: ð35Þ

This could be used as a boundary condition for vortex
matter, which together with (33) determines the stress
tensor and the flow outside B: the trace (the pressure) is
continuous through the layer, the normal stress vanishes,
and the shear and the tangential stress on the boundary are
related by the Cauchy-Riemann condition τxx ¼ 2τHxy.
Often the boundary value of the stress is called a dynamic
boundary condition (DBC). Our DBC is similar to that of a
surface covered by an inextensible film [29].
Action of the Virasoro-Bott group with odd viscosity as a

central extension.—We conclude with a brief comment of a
natural connection of the edge dynamics to the Virasoro-
Bott group, that is, the centrally extended orientation
preserving diffeomorphisms of a circle (see, e.g., [30] on
Virasoro-Bott group in hydrodynamics). Let us pass to the
Lagrangian specification of the irrotational flow outside the
blob. We map conformally the outer domain y > hðxÞ to
the upper half-plane Imz > 0, and evaluate the dynamics of
the holomorphic hydrodynamic potential ϕ ¼ φþ iψ
(uz ¼ ∂zϕ, ∂ z̄ϕ ¼ 0) at the front Φ≡ ϕjh. With the help
of the transformation ∂tΦ ¼ ð _ϕþ uy _hÞjh ¼ ð _ϕþ u2yÞjh, we
obtain

Im z ¼ 0∶ ð∂t þ U∂zÞΦ ¼ Tzz: ð36Þ

Here Tzz is the boundary value of the holomorphic tensor

Tzz ¼ −ð∂zΦÞ2 þ 2iη∂2
zΦ: ð37Þ

Equation (36) is a form of the BDO (28) that is readily
analytically continued outside of the blob Imz > 0. This
form of the BDO equation underlines the geometric mean-
ing of the edge dynamics as the action of the Virasoro-Bott
group. The Tzz is the stress-energy tensor of conformal field
theory, a generator of the Virasoro Poisson-Lie algebra. The
brackets for the generators Ln ¼ ð1=2πÞ H zn−1Tzzdz of the
Virasoro algebra follows from (37) and canonical hydro-
dynamics brackets

ðπ=16ΩiÞfLn; Lmg ¼ ðn −mÞLnþm þ η2n3δnþm;0:

This gives yet another interpretation of the odd viscosity. It
is the central extension of the Virasoro algebra.
Summing up, we demonstrated that the topological

characterization of vortex matter is revealed on the edge
in the form of edge waves and quantized solitons. This
effect would be lost if the vortex matter was approximated
by a uniform vorticity. The edge wave propagates along a
novel kind of boundary layer, the overshoot of vorticity.
Contrary to the known boundary layers, the vorticity layer

offsets the dissipation-free stress of vortex matter, known as
anomalous stress characterized by the odd-viscosity kinetic
coefficient η. We related it to the dipole moment of the
vorticity overshoot and formulated the boundary conditions
for vortex matter. We also underline the geometric nature of
vortex matter by identifying its flows with the action of the
Virasoro-Bott group and the odd viscosity with the central
extension.
Apart from fluid mechanics, our results may be relevant

for physics of superfluid, atomic Bose-Einstein condensate,
and especially for FQHE, since our edge mode is the
classical prototype of a FQHE electronic edge state.
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