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We report on an experimental realization of a bidirectional soliton gas in a 34-m-long wave flume in a
shallow water regime. We take advantage of the fission of a sinusoidal wave to continuously inject solitons
that propagate along the tank, back and forth. Despite the unavoidable damping, solitons retain their profile
adiabatically, while decaying. The outcome is the formation of a stationary state characterized by a dense
soliton gas whose statistical properties are well described by a pure integrable dynamics. The basic
ingredient in the gas, i.e., the two-soliton interaction, is studied in detail and compared favorably with the
analytical solutions of the Kaup-Boussinesq integrable equation. High resolution space-time measurements
of the surface elevation in the wave flume provide a unique tool for studying experimentally the whole
spectrum of excitations.
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In 1965 Zabusky and Kruskal coined the word “soliton”
to characterize two pulses that “shortly after the inter-
action, they reappear virtually unaffected in size or
shape” [1]. This property, which makes solitons fascinat-
ing objects, is a common feature of solutions of integrable
equations, such as, for example, the celebrated Korteweg–
de Vries (KdV) equation that describes long waves in
dispersive media, or the nonlinear Shrödinger equation,
suitable for describing cubic nonlinear, narrow-band
processes. Those equations find applications in many
fields of physics, such as nonlinear optics, water waves,
plasma waves, condensed matter, etc. [2]. In analogy to a
gas of interacting particles described mesoscopically by
the classical Boltzmann equation, in the presence of a
large number of interacting solitons, Zakharov in 1971
derived a kinetic equation for the velocity distribution
function of solitons [3]; see also Refs. [4–6]. Some of the
theoretical predictions have been confirmed via numerical
simulations of the KdV equation in Ref. [7]. The wave
counterpart of the particlelike interpretation of solitons
is known as “integrable wave turbulence”; such a concept
was introduced more recently by Zakharov [8]. The major
question in this field is again the understanding of the
statistical properties of an interacting ensemble of non-
linear waves, described by integrable equations, in the
presence or not of randomness; the latter may arise from
initial conditions which evolve under the coaction of
linear and nonlinear effects [9–17]. In contrast to many
nonintegrable closed wave systems that reach a thermal-
ized state characterized by the equipartition of energy
among the degrees of freedom (Fourier modes) [18,19],
integrable equations are characterized by an infinite
number of conserved quantities and their dynamics is

confined on special surfaces in the phase space. This
prevents the phenomenon of classical thermalization and
it opens up the fundamental quest of what is the large time
state of integrable systems for a given class of initial
conditions. So far the question has no answer and, apart
from recent theoretical approaches [20,21], most of the
results on the KdV problem rely on numerical simula-
tions; see, e.g., Refs. [7,16,22,23]. Soliton gas has been
extensively observed in optics (see, e.g., Refs. [24,25]),
while experimental evidence in a hydrodynamic context is
scarce. In Ref. [26] it has been claimed that the low
frequency component of sea surface elevations measured
in the Currituck Sound (NC, USA) behave as a dense
soliton gas, displaying a power law energy spectrum with
exponent equal to −1; another approach is described in
Ref. [27], where the soliton content in laboratory shallow
water wind waves is estimated.
In this Letter we describe a unique experiment that is

designed to build and monitor a hydrodynamic soliton
gas in a laboratory. We focus on shallow water gravity
waves where the dynamics is described to leading order
in nonlinearity and dispersion by the KdV equation.
In planning the experiment, many issues had to be faced.
The main one is that dissipation is present in any
experimental setup; thus, the integrable equations cannot
describe experiments over long timescales. In order to
reach a stationary regime, energy must be injected by a
forcing device. These two features, dissipation and forc-
ing, are clearly at odds with the integrable turbulence
framework. Therefore, is it possible to produce in the
laboratory a soliton gas described in statistical terms by
integrable turbulence? Answering this question positively
in laboratory experiments would strongly support the
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application of the integrable turbulence framework to
in situ data, as reported in Refs. [26,28].
Experiments are performed in a 34-m-long wave flume,

55 cm wide, with a water depth at rest equal to h ¼ 12 cm.
Waves are generated by a piston-type wave maker (see a
more detailed description in Refs. [29,30]). The free-
surface vertical displacement is measured along the flume
by imaging through the lateral glass walls. We use seven
synchronized monochrome cameras with resolution
1920 × 1080 pixels; each camera records the image of
the contact line of water over 2 m. Thus, the field of view
consists of the 14-m-long central part of the flume. The
spatial resolution is close to 1 mm=pixel. A grid is used to
calibrate the images and correct their geometrical distor-
tions. The contact line is extracted by detecting the
strongest gray scale gradient in a vertical line of pixels.
Subpixel resolution is obtained by polynomial interpolation
in the vicinity of the pixel of steepest gradient. We estimate
that the resulting error on the surface elevation is close to
0.1 mm. The cameras are operated at 20 frames=s.
The second important issue to deal with during the design

of a soliton gas experiment is that wave flumes are usually
not long enough to observe many soliton collisions in the
KdV regime which account only for waves propagating in
one direction. To cope with such a limitation, the end of the
flume, opposite of the piston, consists of a vertical wall that
reflects the waves. Thus the waves propagate in both
directions and are also reflected on the piston. We take
advantage of the reflections to observe the propagation over
timescales larger than the duration restricted to a one-way
trip along the flume. An integrable system of equations that
deals with bidirectional wave propagation in shallow water
is the Kaup-Boussinesq (KB) system:

∂tηþ ∂x½ðhþ ηÞu� ¼ −
h3

3
∂xxxu;

∂tuþ u∂xuþ g∂xη ¼ 0; ð1Þ
where η ¼ ηðx; tÞ is the free-surface elevation, u ¼ uðx; tÞ is
the fluid velocity, g is the acceleration of gravity, and h
is the water depth. Single soliton, as well as multisolitons,
solutions are known for this systemand reported inRef. [31].
The multisolitons solutions of the KB equations include the
collision of two solitons: either overtaking collisions (two
solitons of distinct amplitude propagating in the same
direction) or head-on collisions. Such collisions are elastic;
i.e., the amplitudes of the solitons are not altered after the
interaction. The effect of the collision is to induce a phase
shift. For head-on collisions such a phase shift is much
smaller than for overtaking solitons. For the latter,
the larger solitons “jump” forward, while the smaller
solitons experience a negative delay. For copropagating
solitons, the collision is very close to the KdV two solitons
solution [31].
The amplitude of a single soliton traveling in the flume

decays exponentially with an e-folding timescale of 90s

(see Supplemental Material [32]), i.e., a clear indication of
the presence of viscous dissipation (in the bulk and along
the walls and bottom) and of the nonintegrable long-term
dynamics. Nevertheless, the shape of the soliton is fitted
correctly by the single-soliton solution, suggesting that the
shape of the soliton changes adiabatically and highlighting
the short-time integrable dynamics [33].
Before discussing the realization of the soliton gas, we

analyze the two-soliton solution in the laboratory. A space-
time representation of a head-on collision of large ampli-
tude solitons (a=h ≃ 0.4, with a the amplitude of each
soliton) is shown in Fig. 1(a). The collision occurs between
a newly generated soliton (moving to the right) and a
soliton that has been previously reflected from the wall at
the right end of the tank (moving to the left). The collision
appears quasielastic and the resolution of the picture does
not allow us to visualize here the phase shift induced by the
collision. The value a=h ¼ 0.4 is below the critical thresh-
old, ða=hÞc ¼ 0.6, for which the head-on collision leads to
the formation of a residual jet; see Ref. [34]. Very small
amplitude dispersive waves that move slower than the
solitons are emitted after the collision; see Refs. [35–37],
which are a sign of nonintegrability, remain of small
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FIG. 1. Two-soliton interaction from experiment. (a) Head-on
interaction of large amplitude solitons in a space-time represen-
tation. The wave maker is located at x ¼ 0 m. Small dispersive
waves radiated from the collision can be seen in the background,
a sign of small departure from integrability. (b) Snapshots of
head-on interaction of small amplitude solitons (a=h ¼ 0.1)
traveling in opposite directions. Red, 2 s before the collision;
blue, at the collision; green, 5 s after the collision. Black dashed
lines show the solution of the KB equations (see text for details).
(c) Collision of solitons traveling in the same direction (over-
taking interaction), same color code as in (b).
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amplitude and are only visible for collisions of very
large solitons. Figure 1(b) shows the head-on collision
and Fig. 1(c) the overtaking collision for small amplitude
solitons together with the two-soliton solutions of the KB
equations [Eq. (1)]. The only free parameters are the
amplitudes of the solitons that are obtained by extracting
the amplitude of each soliton when they are widely
separated (before and after the collision) and extrapolated
to the collision point by compensating the dissipation.
The two-soliton theoretical solution matches nicely both
experiments. Again, the observed short-term dynamics is
well reproduced by the integrable model.
In order to obtain a bidirectional soliton gas, a large

number of solitons must be injected in the wave flume. We
face a technical difficulty when trying to inject individual
solitons: the piston must recede slowly so as to not induce
undesired waves and then move forward quickly to gen-
erate the soliton. The receding phase is so long that only
a few solitons can be introduced in the entire flume by this
procedure. We circumvent this issue by continuously
forcing a sinusoidal wave at the wave maker. As observed
experimentally in Refs. [38,39] and numerically in
Refs. [40,41], a sine wave in shallow water spontaneously
steepens and decomposes, after a certain propagation
distance, into a train of solitons of various amplitudes.
Our generation setup is similar to Refs. [42,43] but with a
longer flume to ensure soliton fission. These solitons then
interact with solitons emitted earlier that survive until
dissipated by viscosity. The number of solitons depends
proportionally on the Ursell number U ¼ ð3Aλ2=16π2h3Þ
that measures the dispersive effects over the nonlinear ones
(A is taken as twice the standard deviation of η and λ is the
wavelength); see Refs. [28,39] for details. In this way, we
can inject a large number of solitons in the flume and their
amplitude and density can be tuned by changing the
amplitude and frequency of the sinusoidal forcing.
An example of wave elevation of the obtained soliton gas

can be seen in Fig. 2(a) in a space-time representation. The
density of solitons is large enough so that solitons often
interact. One can clearly see solitons that propagated in
both directions as bright straight ridges, either increasing
or decreasing in the ðx; tÞ space. The lines are not parallel
due to the distribution of amplitudes of the solitons and
because larger solitons propagate faster than smaller ones.
The dashed line shows a line of slope equal to the shallow
water linear long wave phase velocity c0 ¼

ffiffiffiffiffiffiffiffi
ghR

p
[where

hR is the reference level for solitons, slightly below h; see,
e.g., Refs. [27,44] and Fig. 2(c)]. The nearby soliton clearly
propagates faster than a linear long wave. The head-on
collisions are visible by the fact that the amplitude is
maximum at each crossing of two counterpropagating
solitons [as in Fig. 1(b)]. Note that, although the solitons
are injected periodically, there is no obvious sign of such
periodicity in the plots. The large number of interactions
among solitons seems to randomize the gas.

Waves propagating towards positive x can be separated
from those propagating towards negative x by computing
the time-space Fourier transform η̃ðk;ωÞ of the measured
wave field ηðx; tÞ. Waves with k > 0 and ω > 0 (or k < 0
and ω < 0 as the field is real) propagate towards negative x
and waves with k > 0 and ω < 0 to positive x. Figure 2(b)
shows the time-space representation of the waves traveling
with increasing x. Indeed, only the solitons going to the
right are retained. An example of overtaking interaction
of a large soliton and a smaller one is highlighted in
Fig. 2(c), which strongly resembles the isolated collision
shown in Fig. 1(c). The observation of such events supports
the fact that our wave field is indeed dominated by solitons.
Away to investigate all possible excitations in the system

is to compute the space-time Fourier spectrum Eðk;ωÞ of
the wave elevation. Here the Fourier transform is taken over
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FIG. 2. (a) Space-time representation of the soliton gas. The
horizontal scale is the same for all panels. Solitons traveling in
both directions are visible. Many head-on collisions can be seen.
The dashed line is the long wave phase velocity c0 ¼

ffiffiffiffiffiffiffiffi
ghR

p
, with

hR the reference level of soliton propagation. (b) Part of the signal
propagating away from the wave maker (to the right) obtained by
the Hilbert transform. (c) Extraction of the surface elevation
profile corresponding to the dashed line in (b) at t ¼ 11.5 s.
Magenta, fit of a single soliton solution to an isolated pulse. The
horizontal dotted line is the corresponding reference level hR.
Red, the surface elevation at t ¼ 10.3 s corresponding to dashed
line in (b). Green, surface elevation at t ¼ 13.5 s corresponding
to the short dashed line in (b). These two curves correspond to
pre- and postcollision states of a collision that occurs at t ¼
11.5 s and x ¼ 19 m. They illustrate an example of overtaking
soliton interaction in the soliton gas.
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the entire available spatial window (14 m long) and using
the Welch method in time (i.e., using successive temporal
windows of duration 25 s). The spectrum is shown in
Fig. 3(a): several curves with a significant level of energy
can be identified. The strongest is a symmetric pair of
straight lines (labeled bb). They correspond to solitons
whose Fourier components all travel at almost the same
phase velocity. The thickness of the lines is due to the fact
that solitons of various size coexist and travel at slightly
distinct velocities depending on their amplitude. A second
set of curves is labeled as aa. They correspond to linear
dispersive waves following closely the dispersion relation
curve ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gk tanhðkhÞp
. As mentioned above, these

waves may be radiated during collisions and are a signature
of nonintegrability; also, dissipated solitons may end up as
linear dispersive. The lines marked cc correspond to very
small standing transverse modes that are hard to avoid in
wave flumes. The most energetic lines visible are a clear
sign of a soliton gas; to better visualize the spread of energy
across the soliton line, we compute the frequency spectrum
EðωÞ averaged spatially; see Fig. 3(b). The spectrum is
shown for the full field (black line), the waves propagating
towards positive x (red line), and those reflected (blue line).

In the curve corresponding to the waves leaving the wave
maker, a small peak at the forcing frequency is present.
Energy is also present at frequencies lower and higher than
this forcing. The high frequency content appears to decay
exponentially; this result is consistent with numerical
simulations of a pure integrable equation containing a
large content of solitons; see Ref. [16]. The spectral band
below the forcing frequency is rather flat; this is especially
true for the case of left-going waves with no forcing peak
visible. Among the solitons moving away from the wave
maker (right going) are “old” solitons reflected on the
piston and new ones emerging from the sinusoidal wave
fission. The latter are responsible for the forcing peak as
they have not experienced many collisions and have kept
the memory of their initial phase coherence. In contrast, the
blue curve is related to solitons having undergone at least
one reflection and traveled a longer distance, thus having
experienced more interactions. These interactions have
randomized their phase. Our observation of a flat spectrum
for low frequencies is consistent with numerical simula-
tions of the KdV equations (unidirectional soliton gas)
described in Ref. [16]. Field data measured at Duck Pier,
North Carolina, are also consistent with a flat spectrum in a
regime which is interpreted as dominated by solitons [28].
A flat spectrum is actually reminiscent of the shot noise due
to discrete carriers in electronics or photonics. The elec-
trons or photons have a random distribution in time that
leads to a flat spectrum [45]. All these results are in contrast
with the observations of Costa et al. [26] who showed that
a dense soliton gas in a narrow and shallow sound has
low frequency power spectra that behave as ∼ω−1. A
deeper analysis of our data would require us to perform
the inverse scattering transform [28,46] for estimating the
content of the signal in terms of solitons or cnoidal waves.
It is expected that such an approach might help to under-
stand the low frequency power spectra trend in our
experiments.
Further statistical information can be obtained from

the skewness S ¼ hðη − hηiÞ3i=hðη − hηiÞ2i3=2 and kurtosis
K ¼ hðη − hηiÞ4i=hðη − hηiÞ2i2 of the surface elevation of
waves traveling to positive x; those moments of the
probability density function of the surface elevation mea-
sure the departure from Gaussian statistics (S ¼ 0, K ¼ 3).
For the dataset shown in Fig. 3, U ¼ 0.93, in the case of
waves propagating towards positive x, we obtain S ¼ 0.9,
K ¼ 3.45; those numbers are very close to the numerical
values S ¼ 0.8, K ¼ 3.45 obtained at U ¼ 0.95 in
Ref. [16]. Although our setup is not integrable, many
features appear consistent with numerical simulations of
the integrable KdV equation. This is most likely due to the
fact that dissipation operates over very long timescales (90 s,
see Supplemental Material [32]) compared to collision
timescales [about 4 s from Fig. 2(b)]. These collisions are
the elementary process that leads to the randomization of
the relative phases of the solitons. The observed largest
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FIG. 3. (a) Eðk;ωÞ spectrum of the soliton gas. Dashed curves,
aa is the dispersion relation of linear waves ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gk tanhðkhÞp
.

bb is the relation ω ¼ c0k. cc shows the part of the spectrum
related to transverse waves. (b) Frequency spectrum of the wave
elevation average spatially over the locations accessible to the
cameras. Black line, full signal. Red and blue lines, signal
propagating to the right and to the left, respectively. The vertical
dashed line corresponds to the forcing frequency at 0.6 Hz.
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soliton is approximately 5 cm high and the progressive
damping ensures that all soliton amplitudes, from 5 cm down
to zero, are present in the flume. This is characteristic of a
warm soliton gas [6] and promotes many strong interactions
as the one highlighted in Fig. 2(c). If sufficient scale
separation is present between collision and dissipation
timescales, then the dynamics is ruled by the integrablewave
equation.
An open question is the role of head-on collisions on the

statistical properties of the surface elevation. For each head-
on collision, the resulting maximum amplitude exceeds that
calculated by the superposition of the incident solitary
waves [36]. Thus one may expect the extreme events of
the bidirectional gas to be of larger magnitude than that of
the unidirectional KdV gas. Such analysis is left for future
investigations.
In conclusion, in the present Letter we have given

evidence of a hydrodynamic soliton gas produced in the
lab. Despite the fact that dissipation unavoidably exists
in the flume, we were able to produce a gas in a steady
state regime whose properties are consistent with the
conservative integrable dynamics. It is remarkable that
the energy injected exits the wave system without changing
the global picture of integrable turbulence.We hope that our
results will stimulate new theoretical and experimental work
in other nonlinear dispersive media, such as optics, Bose-
Einstein Condensate, etc., where soliton dynamics plays an
important role.
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